已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线与以点 为圆心,1为半径的圆相切,又知的一个焦点与关于直线对称.(1)求双曲线的方程;(2)设直线与双曲线的左支交于,两点,另一直线经过 及的中点,求直线在轴上的截距的取值范围.
已知:、、是同一平面内的三个向量,其中=(1,2) (1)若||,且,求的坐标; (2)若||=且与垂直,求与的夹角.
已知函数 (其中). (1)求函数的最小正周期; (2)若点在函数的图像上,求
已知椭圆:过点,上、下焦点分别为、, 向量.直线与椭圆交于两点,线段中点为. (1)求椭圆的方程; (2)求直线的方程; (3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线与区域有公共点,试求的最小值.
已知四棱锥的底面是直角梯形,,,侧面为正三角形,,.如图所示. (1) 证明:平面; (2) 求四棱锥的体积.
在直三棱柱中, (1)求异面直线与所成角的大小; (2)求多面体的体积。