圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为. (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。
(本小题满分14分)如图所示,某海岛上一观察哨A在上午11时测得一轮船在海岛北偏东的C处,12时20分测得船在海岛北偏西的B处,12时40分轮船到达位于海岛正西方且距海岛5km的E港口,如果轮船始终匀速直线前进,问船速多少?
(本小题14分)等比数列的各项均为正数,且 (Ⅰ)求数列的通项公式; (Ⅱ)设 求数列的前n项和.
在△中,角、、的对边分别为,若, 且.(1)求的值;(2)若,求△的面积.
(本小题满分12分) (Ⅰ)求以下不等式的解集: (1) (2) (Ⅱ)若关于x的不等式的解集为,求实数m的值.
(本小题满分14分)已知数列{an}的前n项和为,且满足,数列满足,为数列的前n项和. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若对任意的,不等式恒成立,求实数的取值范围; (Ⅲ)是否存在正整数m,n(1<m<n),使得,,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.