学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望 .
(本小题满分14分) 已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列(). (1)若,求; (2)试写出关于的关系式,并求的取值范围; (3)续写已知数列,使得是公差为的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
(本小题满分14分) 设函数R. (1)若处取得极值,求常数的值; (2)若上为增函数,求的取值范围.
(本小题满分14分) 如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点. (1)证明:平面; (2)求二面角的余弦值.
(本小题满分12分) 从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品都是二等品”的概率 (1)求从该批产品中任取1件是二等品的概率; (2)若该批产品共10件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求的分布列.
(本小题满分12分) 已知函数(为常数). (1)求函数的最小正周期,并指出其单调减区间; (2)若函数在上的最大值是2,试求实数的值.