选修4-4 :坐标系与参数方程已知圆方程为.(1)求圆心轨迹的参数方程;(2)点是(1)中曲线上的动点,求的取值范围.
已知函数 (I) 解关于的不等式 ;(II)若函数的图象恒在函数的上方,求实数的取值范围。
以直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,),若直线过点P,且倾斜角为,圆C以M为圆心,4为半径。(I)求直线的参数方程和圆C的极坐标方程;(II)试判定直线与圆C的位置关系。
如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。(I)求证:∠PFE=∠PAB;(II)求证:CD2=CF·CP.
已知函数(Ⅰ)当时, 求函数的单调增区间;(Ⅱ)求函数在区间上的最小值;(Ⅲ) 在(Ⅰ)的条件下,设,证明:.参考数据:.
平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.(Ⅰ)求曲线的方程,并讨论的形状与值的关系;(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且(为坐标原点),求曲线的方程.