在三棱锥P-ABC中,D为AB的中点。
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。
如图,四棱锥的底面是矩形,侧面是正三角形,且侧面底面,为侧棱的中点
(1)求证://平面;
(2)求证:⊥平面;
(3)若直线与平面所成的角为30,求的值
(本小题满分15分)如图,在三棱锥中,⊥平面,,,,,分别是,,,的中点,,与交于点,与交于点,连结.
(Ⅰ)求证:;
(Ⅱ)求平面与平面所成角的正弦值.
(本小题满分14分)如图,在五面体ABC—DEF中,四边形BCFE 是矩形,DE 平面BCFE.
求证:(1)BC 平面ABED;
(2)CF // AD.
(本小题满分10分)直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.
(1)求证:;
(2)求证:平面.
如图,在四棱锥中,底面是菱形,且.
(1)求证:;
(2)若平面与平面的交线为,求证:.
如图,已知三棱柱ABC—A1B1C1中,底面ABC是等边三角形,侧棱与底面垂直,点E,F分别为棱BB1,AC中点。
(1)证明:BF//平面A1CE;
(2)若AA1=6,AC=4,求直线CE与平面A1EF所成角的正弦值。
(本小题满分12分)在长方体中,,.点是线段上的动点,点为的中点.
(1)当点是中点时,求证:直线∥平面;
(2)若二面角的余弦值为,求线段的长.
(本小题满分12分)如图,已知平面是正三角形,.
(Ⅰ)在线段上是否存在一点,使平面?
(Ⅱ)求证:平面平面;
(Ⅲ)求二面角的余弦值.