如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.
在四棱锥中,底面,,,,
,是的中点.
(1) 证明:;
(2) 证明:平面;
(3) 求二面角的余弦值.
如图,在五面体中,已知平面,,,,.
(1)求证:;
(2)求三棱锥的体积.
(本小题8分)如图,在直三棱柱 中,AB=AC,D、E分别是棱BC、 上的点(点D不在BC的端点处),且ADDE,F为 的中点.
(1)求证:平面ADE平面;
(2)求证:平面ADE.
(本小题满分13分)
如图,⊙O在平面内,AB是⊙O的直径,平面,C为圆周上不同于A、B的任意一点,M,N,Q分别是PA,PC,PB的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求证:平面.
如图,四棱锥,平面⊥平面,△是边长为2的等边三角形,底面是矩形,且.
(1)若点是的中点,求证:平面;
(2)若为上任意一点,试问点在线段上什么位置时,⊥;
(3)若点是的中点,求.
如图,四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD;
(2)若M为PC的中点,求证:PA∥平面BDM.
(本小题满分14分)如图,在四面体中,平面平面,90°.,,分别为棱,,的中点.
(1)求证:平面;
(2)求证:平面平面.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.
如图,三棱锥中,平面,,点,分别为,的中点.
(1)求证:平面;
(2)在线段上的点,且平面.
①确定点的位置;
②求直线与平面所成角的正切值.
(本小题满分12分)在长方体中,,.点是线段上的动点,点为的中点.
(1)当点是中点时,求证:直线∥平面;
(2)若二面角的余弦值为,求线段的长.
如图,矩形所在平面与直角三角形所在平面互相垂直,,点分别是的中点.
(1)求证: ∥平面;
(2)求证:平面平面.