高中数学

(本小题满分12分)如图,垂直于梯形所在的平面,中点, 四边形为矩形,线段于点N .

(1)求证:// 平面
(2)求二面角的大小;
(3)在线段上是否存在一点,使得与平面所成角的大小为? 若存在,请求出的长;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,四边形是平行四边形,,点E是的中点.

(1)求证:∥平面
(2)求证:平面平面.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥,平面⊥平面,△是边长为2的等边三角形,底面是矩形,且

(1)若点的中点,求证:平面
(2)试问点在线段上什么位置时,二面角的大小为

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分15分)
如图(1)所示,直角梯形中,.过是线段上的一个动点.将沿向上折起,使平面平面.连结(如图(2)).

(Ⅰ)取线段的中点,问:是否存在点,使得平面?若存在,求出 的长;不存在,说明理由;
(Ⅱ)当时,求平面和平面所成的锐二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.

(Ⅰ)求证:DE∥平面PAC.
(Ⅱ)求证:AB⊥PB;
(Ⅲ)若PC=BC,求二面角P—AB—C的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,空间四边形中,分别是的中点,且

(1)求证: 平面
(2)求证:四边形是矩形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知正方形和矩形所在平面互相垂直,是线段的中点.用向量方法证明与解答:

(1)求证:∥平面
(2)试判断在线段上是否存在一点,使得直线所成角为,并说明理由.  

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,平面平面,其中为矩形,为梯形,中点.

(Ⅰ)求证:平面
(Ⅱ)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在多面体中,底面是边长为的的菱形,,四边形是矩形,平面平面分别是的中点.

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(1)示,在梯形中,,且,如图(2)沿将四边形折起,使得平面与平面垂直,的中点.

(Ⅰ)求证:
(Ⅱ)求证:
(Ⅲ)求点D到平面BCE的距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,已知中,
平面分别是的中点.

(1)求证:平面⊥平面
(2)设平面平面,求证
(3)求四棱锥B-CDFE的体积V.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥中,平面,点分别是线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,.

(1)求证:平面
(2)若M为线段PA的中点,且过三点的平面与PB交于点N,求PN:PB的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)设点是线段上的一点,,且平面
(1)求实数的值;
(2)若,且平面平面,求二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图甲,⊙的直径,圆上两点在直径的两侧,使.沿直径折起,使两个半圆所在的平面互相垂直(如图乙),的中点,的中点.上的动点,根据图乙解答下列各题:

(1)求点到平面的距离;
(2)在弧上是否存在一点,使得∥平面?若存在,试确定点的位置;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题