如图,空间四边形中,分别是的中点,且,. (1)求证: 平面; (2)求证:四边形是矩形.
阅读下面材料:根据两角和与差的正弦公式,有 ----------①------② 由①+② 得------③ 令有 代入③得 . (1)利用上述结论,试求的值。 (2)类比上述推证方法,根据两角和与差的余弦公式,证明:;
已知中至少有一个小于2。
已知,复数z =. (1)实数m取什么值时,复数z为纯虚数? (2)实数m取什么值时,复数z对应的点在直线上?
已知函数; (1)解不等式; (2)若对任意实数,不等式恒成立,求实数的取值范围.
在直角坐标系中,曲线的参数方程为(为参数)。 若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(其中为常数) (1)当时,曲线与曲线有两个交点.求的值; (2)若曲线与曲线只有一个公共点,求的取值范围.