已知函数(常数).(Ⅰ)求的单调区间;(Ⅱ)设如果对于的图象上两点,存在,使得的图象在处的切线∥,求证:.
抛物线经过点、与,其中,,设函数在和处取到极值.(1)用表示;(2) 比较的大小(要求按从小到大排列);(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求的解析式.
在中,且.(1)判断的形状;(2)若求的取值范围.
设函数.(1)求函数的单调区间;(2)若对恒成立,求实数的取值范围.
设函数,其中向量,向量.(1)求的最小正周期;(2)在中,分别是角的对边,,求的长.
已知:对任意,不等式恒成立;:存在,使不等式成立,若“或”为真,“且”为假,求实数的取值范围.