如图,在三棱柱
-中,
,
,
,
在底面
的射影为
的中点,
为
的中点.
(1)证明:
平面
;
(2)求二面角
的平面角的余弦值.
如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.
(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
(本小题共12分)已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图.
(1)求证:直线BE⊥平面D1AE;
(2)求点A到平面D1BC的距离.
如图,三棱柱中,点在平面内的射影在上,,,
(1)证明:
(2)设直线与平面的距离为,求二面角的大小.
如图,在三棱锥中,和都是以为斜边的等腰直角三角形,若,是的中点
(1)证明:;
(2)求与平面所成角的正弦值.
(本小题满分12分)如图,已知正三棱柱的各棱长均相等,是的中点,点在侧棱上,且
(Ⅰ)求证:⊥;
(Ⅱ)求二面角的余弦值.
如图,四棱锥的底面是平行四边形,,,分别是棱的中点.
(1)证明平面;
(2)若二面角为,
①证明:平面平面.
②求直线与平面所成角的正弦值.
棱柱的所有棱长都为2,,平面⊥平面,.
(1)证明:;
(2)求锐二面角的平面角的余弦值;
(3)在直线上是否存在点,使得∥平面,若存在求出的位置.
如图,在三棱柱中,,,,在底面ABC的射影为BC的中点,D为的中点.
(1)证明:;
(2)求直线和平面所成的角的正弦值.