某种产品的广告费支出(单位:百万元)与销售额(单位:百万元)之间有如下对应数据
2 |
4 |
5 |
6 |
8 |
|
30 |
40 |
60 |
50 |
70 |
(1)画出散点图;
(2)求线性回归方程;
(公式:)
(3)预测当广告费支出为7百万元时的销售额。
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
请画出上表数据的散点图; (要求 : 点要描粗)
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。
(相关公式:)
(本题满分14分) 假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计数据,由资料显示对呈线性相关关系.
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程。
(2)试根据(1)求出的线性回归方程,预测使用年限为10年时,维修费用是多少?
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差(°C) |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数(个) |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(Ⅰ)求选取的组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是月与月的两组数据,请根据至月份的数据,求出关于的线性回归方程;(其中)
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的.试问该小组所得线性回归方程是否理想?
为考察性别与是否喜欢饮酒之间的关系,在某地区随机抽取290人,得到如下表:
|
喜欢饮酒 |
不喜欢饮酒 |
男 |
101 |
45 |
女 |
124 |
20 |
利用列联表的独立性检验判断性别与饮酒是否有关系?
(本小题满分14分)
为积极响应国家“家电下乡”政策的号召,某厂家把总价值为10万元的A、B两种型号的电视机投放市场,并且全部被农民购买。若投放的A、B两种型号的电视机价值都不低于1万元,农民购买A、B两种型号的电视机将按电视机价值的一定比例给予补贴,补贴方案如下表所示,设投放市场的A、B型号电视机的价值分别为万元,万元,农民得到的补贴为万元,解答以下问题.
|
A型号 |
B型号 |
电视机价值(万元) |
||
农民获得补贴(万元) |
(1) 用的代数式表示
(2) 当取何值时, 取最大值并求出其最大值(精确到0.1,参考数据:)
(12分) 假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计数据,由资料显示对呈线性相关关系.
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)请根据上表数据,用最小二乘法求出y关于x的线性回归方程。
(2)试根据(1)求出的线性回归方程,预测使用年限为10年时, 维修费用是多少?
(本小题12分) 在某化学实验中,测得如下表所示的6组数据,其中x(min)表示化学反应进行的时,y(mg)表示未转化物质的量
x(min) |
l |
2 |
3 |
4 |
5 |
6 |
y(mg) |
39.8 |
32.2 |
25.4 |
20.3 |
16.2 |
13.3 |
(1)设x与z之问具有关系,试根据测量数据估计c和d的值;
(2)估计化学反应进行到10 min时未转化物质的量.
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
我国科研人员屠呦呦法相从青篙中提取物青篙素抗疟性超强,几乎达到100%,据监测:服药后每毫升血液中的含药量y(微克)与时间r(小时)之间近似满足如图所示的曲线
(1)写出第一服药后y与t之间的函数关系式y=f(x);
(2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效,求服药一次后治疗有效的时间是多长?
在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲,
(Ⅰ)根据以上的数据建立一个2×2的列联表;
(Ⅱ)若认为“性别与患色盲有关系”,则出错的概率会是多少.
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒) |
2 |
4 |
5 |
6 |
8 |
每小时生产有缺点的零件数y(件) |
30 |
40 |
60 |
50 |
70 |
(Ⅰ)画出散点图;
(Ⅱ)如果y对x有线性相关关系,求回归直线方程;
(Ⅲ)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机
器的运转速度应控制在什么范围内?(参考数值:,)
调查1000名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如下表:
|
患慢性气管炎 |
未患慢性气管炎 |
总计 |
吸烟 |
360 |
320 |
680 |
不吸烟 |
140 |
180 |
320 |
合计 |
500 |
500 |
1000 |
试问:根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为吸烟习惯与患慢性气管炎病有关?参考数据如下:
(k=,且P(K2≥6.635)≈0.01,)
(本小题满分12分) 第11届全国人大五次会议于20 1 2年3月5日至3月1 4日在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和1 4名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.
(Ⅰ)根据以上数据完成以下2×2列联表:
并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
(参考公式:
参考数据:
(Ⅱ)已知会俄语的6名女记者中有4人曾在俄罗斯工作过,若从会俄语的6名女记者中随
机抽取2人做同声翻译,则抽出的2人都在俄罗斯工作过的概率是多少?