已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)
(1)求的解析式;
(2)设,求证:当时,且,恒成立;
(3)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。
已知椭圆:()过点,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆于两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。
给定正整数,若项数为的数列满足:对任意的,均有(其中),则称数列为“Γ数列”.
(1)判断数列和是否是“Γ数列”,并说明理由;
(2)若为“Γ数列”,求证:对恒成立;
(3)设是公差为的无穷项等差数列,若对任意的正整数,
均构成“Γ数列”,求的公差.
已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
已知函数, 数列满足.
(1)求数列的通项公式;
(2)令,若对一切成立,求最小正整数m.
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
已知函数,其中且m为常数.
(1)试判断当时函数在区间上的单调性,并证明;
(2)设函数在处取得极值,求的值,并讨论函数的单调性.
已知()
(1)若方程有3个不同的根,求实数的取值范围;
(2)在(1)的条件下,是否存在实数,使得在上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.
已知函数,曲线经过点,
且在点处的切线为.
(1)求、的值;
(2)若存在实数,使得时,恒成立,求的取值范围.
已知,是函数的两个零点,其中常数,,设.
(Ⅰ)用,表示,;
(Ⅱ)求证:;
(Ⅲ)求证:对任意的.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
已知函数.
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?