北京市海淀区高三下学期期末练习(二模)文科数学试卷
下面给出的四个点中, 位于表示的平面区域内,且到直线的距离为的点是( )
A. | B. | C. | D. |
如图所示,为了测量某湖泊两侧间的距离,李宁同学首先选定了与不共线的一点,然后给出了三种测量方案:(的角所对的边分别记为):
① 测量 ② 测量 ③测量
则一定能确定间距离的所有方案的序号为( )
A.①② | B.②③ | C.①③ | D.①②③ |
已知点分别是正方体的棱的中点,点分别是线段与上的点,则与平面垂直的直线有( )
A.0条 | B.1条 | C.2条 | D.无数条 |
下列函数中:①;②;③,其图象仅通过向左(或向右)平移就能与函数的图象重合的是_____.(填上符合要求的函数对应的序号)
农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:
根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株/.{第13,14题的第一空3分,第二空2分}
下图为某地区2012年1月到2013年1月鲜蔬价格指数的变化情况:
记本月价格指数上月价格指数.规定:当时,称本月价格指数环比增长;
当时,称本月价格指数环比下降;当时,称本月价格指数环比持平.
(1) 比较2012年上半年与下半年鲜蔬价格指数月平均值的大小(不要求计算过程);
(2) 直接写出从2012年2月到2013年1月的12个月中价格指数环比下降的月份.若从这12个月中随机选择连续的两个月进行观察,求所选两个月的价格指数都环比下降的概率;
(3)由图判断从哪个月开始连续三个月的价格指数方差最大.(结论不要求证明)
(本小题满分14分)
如图,在三棱柱中,底面,,E、F分别是棱的中点.
(1)求证:AB⊥平面AA1 C1C;
(2)若线段上的点满足平面//平面,试确定点的位置,并说明理由;
(3)证明:⊥A1C.
已知函数,其中且.
(1)求证:函数在点处的切线与总有两个不同的公共点;
(2)若函数在区间上有且仅有一个极值点,求实数的取值范围.
已知椭圆的离心率为,短轴端点分别为.
(1)求椭圆的标准方程;
(2)若,是椭圆上关于轴对称的两个不同点,直线与轴交于点,判断以线段为直径的圆是否过点,并说明理由.