已知()(1)若方程有3个不同的根,求实数的取值范围;(2)在(1)的条件下,是否存在实数,使得在上恰有两个极值点,且满足,若存在,求实数的值,若不存在,说明理由.
(本小题满分12分)已知命题:不等式对一切恒成立;命题:函数是增函数.若或为真,且为假,求实数的取值范围.
(本小题满分14分)已知函数,, 其中,是自然对数的底数.函数,. (Ⅰ)求的最小值; (Ⅱ)将的全部零点按照从小到大的顺序排成数列,求证: (1),其中; (2).
(本小题满分13分)如图,已知抛物线,过焦点F任作一条直线与相交于两点,过点作轴的平行线与直线相交于点(为坐标原点). (Ⅰ)证明:动点在定直线上; (Ⅱ)点P为抛物线C上的动点,直线为抛物线C在P点处的切线,求点Q(0,4)到直线距离的最小值.
(本小题满分13分)在四棱锥中,,,平面,直线PC与平面ABCD所成角为,. (Ⅰ)求四棱锥的体积; (Ⅱ)若为的中点,求证:平面平面.
(本小题满分13分)设是公比为q的等比数列. (Ⅰ)推导的前n项和公式; (Ⅱ)设q≠1, 证明数列不是等比数列.