已知函数,其中且m为常数.(1)试判断当时函数在区间上的单调性,并证明; (2)设函数在处取得极值,求的值,并讨论函数的单调性.
(满分6分)(I)已知,且为第三象限角,求的值;(II)求函数的最大值。
(本小题满分14分)已知圆:,点,,点在圆上运动,的垂直平分线交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设分别是曲线上的两个不同点,且点在第一象限,点在第三象限,若,为坐标原点,求直线的斜率;(Ⅲ)过点,且斜率为的动直线交曲线于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.
(本小题满分12分)已知函数.(Ⅰ)当时,求函数在,上的最大值、最小值;(Ⅱ)令,若在,上单调递增,求实数 的取值范围.
(本小题满分12分)已知数列满足,且,为的前项和.(Ⅰ)求证:数列是等比数列,并求的通项公式;(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.
(本小题满分12分)已知向量,,向量,,函数.(Ⅰ)求的最小正周期;(Ⅱ)已知,,分别为内角,,的对边,为锐角,,,且恰是在,上的最大值,求,和的面积.