(本小题满分14分)已知圆:,点,,点在圆上运动,的垂直平分线交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设分别是曲线上的两个不同点,且点在第一象限,点在第三象限,若,为坐标原点,求直线的斜率;(Ⅲ)过点,且斜率为的动直线交曲线于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.
某研究性学习小组有名同学. (1)这名同学排成一排照相,则同学甲与同学乙相邻的排法有多少种? (2)从名同学中选人参加班级接力比赛,则同学丙不跑第一棒的安排方法有多少种?
已知函数,. (1)求函数的最小正周期和单调增区间; (2)求函数在区间上的最小值和最大值; (3)若,求使的取值范围.
已知sin θ、cos θ是关于x的方程x2-ax+a=0(a∈R)的两个根. (1)求cos+sin的值; (2)求tan(π-θ)-的值.
设,求的值。
已知非零向量a,b,c满足,向量a,b的夹角为120°,且|b|=2|a|求向量a与 c的夹角。