(本题14分)已知函数f (x) = ax3 +x2 -ax,其中a,x∈R.
(Ⅰ)若函数f (x)在区间(1,2)上不是单调函数,试求a的取值范围;
(Ⅱ)直接写出(不需给出运算过程)函数的单调递减区间;
(Ⅲ)如果存在a∈(-∞,-1],使得函数, x∈[-1, b](b > -1),在x = -1处取得最小值,试求b的最大值.
(本小题满分13分)设函数f(x)=x3+ax2-a2x+m(a>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.
(本小题满分14分)已知集合是满足下列性质的函数
的全体:对于定义域B中的任何两个自变量
,都有
。(1)当B=R时,
是否属于
?为什么?(2)当B=
时,
是否属于
,若属于请给予证明;若
不属于说明理由,并说明是否存在一个使
属于
?
(本小题满分14分)已知函数=
+
有如下性质:如果常数
>0,那么该
函数在0,
上是减函数,在
,+∞
上是增函数.
(1)如果函数=
+
(
>0)的值域为
6,+∞
,求
的值;
(2)研究函数=
+
(常数
>0)在定义域内的单调性,并说明理由;
(3)对函数=
+
和
=
+
(常数
>0)作出推广,使它们都是你所推广的
函数的特例.
(4)(理科生做)研究推广后的函数的单调性(只须写出结论,不必证明),并求函数=
+
(
是正整数)在区间[
,2]上的最大值和最小值(可利用你
的研究结论).
(本小题满分13分)已知的图像在点
处
的切线与直线平行.
(1)求a,b满足的关系式;
(2)若上恒成立,求a的取值范围;
(3)证明:
(本小题满分12分)已知函数=
在
处取得极值.
(1)求实数的值;
(2) 若关于的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3) 证明:.参考数据: