给定正整数,若项数为的数列满足:对任意的,均有(其中),则称数列为“Γ数列”.
(1)判断数列和是否是“Γ数列”,并说明理由;
(2)若为“Γ数列”,求证:对恒成立;
(3)设是公差为的无穷项等差数列,若对任意的正整数,
均构成“Γ数列”,求的公差.
相关知识点
推荐套卷
给定正整数,若项数为的数列满足:对任意的,均有(其中),则称数列为“Γ数列”.
(1)判断数列和是否是“Γ数列”,并说明理由;
(2)若为“Γ数列”,求证:对恒成立;
(3)设是公差为的无穷项等差数列,若对任意的正整数,
均构成“Γ数列”,求的公差.