设函数.(1)若在时有极值,求实数的值和的极大值; (2)若在定义域上是增函数,求实数的取值范围.
已知函数的定义域为.⑴求的取值范围;⑵当取最大值时,解关于的不等式.
已知在平面直角坐标系中,圆的参数方程为(为参数),以为极轴建立极坐标系,直线的极坐标方程为.⑴写出直线的直角坐标方程和圆的普通方程;⑵求圆截直线所得的弦长.
如图所示,自⊙外一点引切线与⊙切于点,为的中点,过引割线交⊙于两点. 求证:
已知函数,⑴求证函数在上的单调递增;⑵函数有三个零点,求的值;⑶对恒成立,求a的取值范围。
设函数.⑴求函数的单调区间;⑵求函数的值域;⑶已知对恒成立,求实数的取值范围.