(本小题满分12分)已知函数以为切点的切线方程是.
(Ⅰ)求实数,的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)求函数切线倾斜角的取值范围.
已知偶函数()在点处的切线与直线垂直,函数.
(Ⅰ)求函数的解析式.
(Ⅱ)当时,求函数的单调区间和极值点;
(Ⅲ)证明:对于任意实数x,不等式恒成立.(其中e=2.71828…是自然对数的底数)
(本小题满分10分)已知(),,其中是自然对数的底数,.
(1)当时,求函数的单调区间和极值;
(2)求证:当时,;
(3)是否存在实数,使的最小值是?若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)已知a>0,函数f(x)=-2asin,当x∈时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)求f(x)的单调区间;
(3)指出所求函数图像是由f(x)=sinx的图像如何变换得到的.
(本小题满分15分)如图,正方形的边长为1,正方形所在平面与平面互相垂直,是的中点.
(1)求证:平面;
(2)求证:;
(3)求三棱锥的体积.
已知二次函数经过坐标原点,当 时有最小值,数列的前项和为,点均在函数的图象上。
(1)求函数的解析式;
(2)求数列的通项公式;
(3)设是数列的前项和,求使得对所有都成立的最小正整数.
(本小题满分13分)已知数列的前项和,,等差数列中
(1)求数列、的通项公式;
(2)是否存在正整数,使得 若存在,求出的最小值,若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.
(1)求椭圆的标准方程;
(2)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线M的参数方程为为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为(t为参数).
(Ⅰ)求曲线M和N的直角坐标方程,
(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.