已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.(1)求椭圆的标准方程;(2)是否存在与椭圆交于两点的直线:,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
已知=(1+,1),=(1,)(,∈R),且·. (Ⅰ)求函数的最小正周期; (Ⅱ)若的最大值是4,求的值,并说明此时的图象可由的图象经过怎样的变换而得到.
已知中,、、是三个内角、、的对边,关于的不等式的解集是空集. (1)求角的最大值; (2)若,的面积,求当角取最大值时的值.
已知A、B、C为的三个内角,向量,且 (1)求的值; (2)求C的最大值,并判断此时的形状.
设函数f(x)=a·b,其中向量a=(cos,sin),(x∈R),向量b=(cosj,sinj) (Ⅰ)求j的值; (Ⅱ)若函数y=1+sin的图象按向量c=(m,n)(| m |<p)平移可得到函数y=f(x)的图象,求向量c.
已知函数 (1)求函数的最小正周期及单调增区间; (2)若函数的图象按向量平移后得到函数的图象,求的解析式.