初中数学

如图,在正方形ABCD中,点E(与点BC不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点FBC的垂线交BC的延长线于点G,连接CF

(1)求证:△ABE≌△EGF

(2)若AB=2,SABE=2SECF,求BE

来源:2016年广西来宾市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图1,在正方形ABCD内作∠EAF=45°,AEBC于点EAFCD于点F,连接EF,过点AAHEF,垂足为H

(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG

①求证:△AGE≌△AFE

②若BE=2,DF=3,求AH的长.

(2)如图3,连接BDAE于点M,交AF于点N.请探究并猜想:线段BMMNND之间有什么数量关系?并说明理由.

来源:2016年广西贵港市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图(1),菱形ABCD对角线ACBD的交点O是四边形EFGH对角线FH的中点,四个顶点ABCD分别在四边形EFGH的边EFFGGHHE上.

(1)求证:四边形EFGH是平行四边形;

(2)如图(2)若四边形EFGH是矩形,当ACFH重合时,已知,且菱形ABCD的面积是20,求矩形EFGH的长与宽.

来源:2016年广西北海市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,已知正方形ABCD边长为1,∠EAF=45°,AEAF,则有下列结论:

①∠1=∠2=22.5°;

②点CEF的距离是 2 - 1

③△ECF的周长为2;

BE+DFEF

其中正确的结论是  .(写出所有正确结论的序号)

来源:2016年广西北海市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,矩形 的对角线 相交于点 关于 的对称图形为

(1)求证:四边形 是菱形;

(2)连接 ,若

①求 的值;

②若点 为线段 上一动点(不与点 重合),连接 ,一动点 从点 出发,以 的速度沿线段 匀速运动到点 ,再以 的速度沿线段 匀速运动到点 ,到达点 后停止运动,当点 沿上述路线运动到点 所需要的时间最短时,求 的长和点 走完全程所需的时间.

来源:2017年广东省广州市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中 是原点, 的顶点 的坐标分别是 ,点 把线段 三等分,延长 分别交 于点 ,连接 .则下列结论:

的中点;② 相似;③四边形 的面积是 20 3 ;④ OD = 4 5 3

其中正确的结论是   (填写所有正确结论的序号).

来源:2017年广东省广州市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图, BD是正方形 ABCD的对角线, BC=2,边 BC在其所在的直线上平移,将通过平移得到的线段记为 PQ,连接 PAQD,并过点 QQOBD,垂足为 O,连接 OAOP

(1)请直接写出线段 BC在平移过程中,四边形 APQD是什么四边形?

(2)请判断 OAOP之间的数量关系和位置关系,并加以证明;

(3)在平移变换过程中,设 yS OPBBPx(0≤ x≤2),求 yx之间的函数关系式,并求出 y的最大值.

来源:2016年广东省中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 P 为对角线 AC 所在直线上的一个动点,连接 PD ,过点 P PE PD ,交直线 AB 于点 E ,过点 P MN AB ,交直线 CD 于点 M ,交直线 AB 于点 N AB = 4 3 AD = 4

(1)如图1,①当点 P 在线段 AC 上时, PDM EPN 的数量关系为: PDM   =   EPN

DP PE 的值是   

(2)如图2,当点 P CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;

(3)如图3,以线段 PD PE 为邻边作矩形 PEFD .设 PM 的长为 x ,矩形 PEFD 的面积为 y .请直接写出 y x 之间的函数关系式及 y 的最小值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-25
  • 题型:未知
  • 难度:未知

中心为 O 的正六边形 ABCDEF 的半径为 6 cm ,点 P Q 同时分别从 A D 两点出发,以 1 cm / s 的速度沿 AF DC 向终点 F C 运动,连接 PB PE QB QE ,设运动时间为 t ( s )

(1)求证:四边形 PBQE 为平行四边形;

(2)求矩形 PBQE 的面积与正六边形 ABCDEF 的面积之比.

来源:2020年内蒙古通辽市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 P 为对角线 AC 所在直线上的一个动点,连接 PD ,过点 P PE PD ,交直线 AB 于点 E ,过点 P MN AB ,交直线 CD 于点 M ,交直线 AB 于点 N AB = 4 3 AD = 4

(1)如图1,①当点 P 在线段 AC 上时, PDM EPN 的数量关系为: PDM    EPN

DP PE 的值是   

(2)如图2,当点 P CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;

(3)如图3,以线段 PD PE 为邻边作矩形 PEFD .设 PM 的长为 x ,矩形 PEFD 的面积为 y .请直接写出 y x 之间的函数关系式及 y 的最小值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是正方形,点 F 是射线 AD 上的动点,连接 CF ,以 CF 为对角线作正方形 CGFE ( C G F E 按逆时针排列),连接 BE DG

(1)当点 F 在线段 AD 上时.

①求证: BE = DG

②求证: CD - FD = 2 BE

(2)设正方形 ABCD 的面积为 S 1 ,正方形 CGFE 的面积为 S 2 ,以 C G D F 为顶点的四边形的面积为 S 3 ,当 S 2 S 1 = 13 25 时,请直接写出 S 3 S 1 的值.

来源:2020年辽宁省盘锦市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 和正方形 CEFG (其中 BD > 2 CE ) BG 的延长线与直线 DE 交于点 H

(1)如图1,当点 G CD 上时,求证: BG = DE BG DE

(2)将正方形 CEFG 绕点 C 旋转一周.

①如图2,当点 E 在直线 CD 右侧时,求证: BH - DH = 2 CH

②当 DEC = 45 ° 时,若 AB = 3 CE = 1 ,请直接写出线段 DH 的长.

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = AC M AC 边上的一点,连接 BM ,作 AP BM 于点 P ,过点 C AC 的垂线交 AP 的延长线于点 E

(1)如图1,求证: AM = CE

(2)如图2,以 AM BM 为邻边作平行四边形 AMBG ,连接 GE BC 于点 N ,连接 AN ,求 GE AN 的值;

(3)如图3,若 M AC 的中点,以 AB BM 为邻边作平行四边形 AGMB ,连接 GE BC 于点 M ,连接 AN ,经探究发现 NC BC = 1 8 ,请直接写出 GE AN 的值.

来源:2020年辽宁省朝阳市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E BC 边上,且 CE = 2 BE ,连接 AE BD 于点 G ,过点 B BF AE 于点 F ,连接 OF 并延长,交 BC 于点 M ,过点 O OP OF DC 于点 N S 四边形 MONC = 9 4 ,现给出下列结论:① GE AG = 1 3 ;② sin BOF = 3 10 10 ;③ OF = 3 5 5 ;④ OG = BG ;其中正确的结论有 (    )

A.

①②③

B.

②③④

C.

①②④

D.

①③④

来源:2020年辽宁省朝阳市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中,点 E 是射线 BC 上一动点,连接 AE ,过点 B BF AE 于点 G ,交直线 CD 于点 F

(1)当矩形 ABCD 是正方形时,以点 F 为直角顶点在正方形 ABCD 的外部作等腰直角三角形 CFH ,连接 EH

①如图1,若点 E 在线段 BC 上,则线段 AE EH 之间的数量关系是    ,位置关系是   

②如图2,若点 E 在线段 BC 的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;

(2)如图3,若点 E 在线段 BC 上,以 BE BF 为邻边作平行四边形 BEHF M BH 中点,连接 GM AB = 3 BC = 2 ,求 GM 的最小值.

来源:2020年辽宁省鞍山市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

初中数学四边形综合题试题