如图,正方形 ABCD 和正方形 CEFG (其中 BD > 2 CE ) , BG 的延长线与直线 DE 交于点 H .
(1)如图1,当点 G 在 CD 上时,求证: BG = DE , BG ⊥ DE ;
(2)将正方形 CEFG 绕点 C 旋转一周.
①如图2,当点 E 在直线 CD 右侧时,求证: BH - DH = 2 CH ;
②当 ∠ DEC = 45 ° 时,若 AB = 3 , CE = 1 ,请直接写出线段 DH 的长.
某商场以每件280元的价格购进一批商品,当每件商品的售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.设每件商品的实际售价比原销售价降低了x元. (1)填表: (2)要使商场每月销售该商品的利润达到7200元,且更有利于减少库存,则该商品每件实际售价应定为多少元?
如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度. (参考数据:sin22°≈,cos22°≈,tan22°≈)
(1)已知x+y=8,x2-y2=32,则x- y=; (2)已知x>y>0,x+y=8,x2+y2=40,求x-y的值.
解不等式组:
在平面直角坐标系中,抛物线与x轴的两个交点分别为A(-3,0),B (1,0),过顶点C作CH⊥x轴于点H. (1)a=,b=,顶点C的坐标为. (2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由. (3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.