初中数学

如图,矩形 ABCD 中, AB = 4 BC = 8 P 是边 DC 上的动点, G AP 的中点,以 P 为中心,将 PG 绕点 P 顺时针旋转 90 ° G 的对应点为 G ' ,当 B D G ' 在一条直线上时, PD =        

来源:2016年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为矩形, G 是对角线 BD 的中点.连接 GC 并延长至 F ,使 CF = GC ,以 DC CF 为邻边作菱形 DCFE ,连接 CE

(1)判断四边形 CEDG 的形状,并证明你的结论.

(2)连接 DF ,若 BC = 3 ,求 DF 的长.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在矩形 ABCD CD 边上取一点 E ,将 ΔBCE 沿 BE 翻折,使点 C 恰好落在 AD 边上点 F 处.

(1)如图1,若 BC = 2 BA ,求 CBE 的度数;

(2)如图2,当 AB = 5 ,且 AF · FD = 10 时,求 BC 的长;

(3)如图3,延长 EF ,与 ABF 的角平分线交于点 M BM AD 于点 N ,当 NF = AN + FD 时,求 AB BC 的值.

来源:2020年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 BC = 3 E F 分别为 AB CD 边的中点.动点 P 从点 E 出发沿 EA 向点 A 运动,同时,动点 Q 从点 F 出发沿 FC 向点 C 运动,连接 PQ ,过点 B BH PQ 于点 H ,连接 DH .若点 P 的速度是点 Q 的速度的2倍,在点 P 从点 E 运动至点 A 的过程中,线段 PQ 长度的最大值为  ,线段 DH 长度的最小值为  

来源:2020年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E AD 边的中点, BE AC ,垂足为 F ,连接 DF ,下列四个结论:① ΔAEF ΔCAB ;② tan CAD = 2 ;③ DF = DC ;④ CF = 2 AF ,正确的是 (    )

A.①②③B.②③④C.①③④D.①②④

来源:2017年四川省广元市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E BC 上一点,连接 AE ,将矩形沿 AE 翻折,使点 B 落在 CD F 处,连接 AF ,在 AF 上取点 O ,以 O 为圆心, OF 长为半径作 O AD 相切于点 P .若 AB = 6 BC = 3 3 ,则下列结论:① F CD 的中点;② O 的半径是2;③ AE = 9 2 CE ;④ S 阴影 = 3 2 .其中正确结论的序号是  

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图1,把一张正方形纸片对折得到长方形 ABCD ,再沿 ADC 的平分线 DE 折叠,如图2,点 C 落在点 C ' 处,最后按图3所示方式折叠,使点 A 落在 DE 的中点 A ' 处,折痕是 FG ,若原正方形纸片的边长为 6 cm ,则 FG =    cm

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的边 AB x 轴上, AB BC 的长分别是一元二次方程 x 2 7 x + 12 = 0 的两个根 ( BC > AB ) OA = 2 OB ,边 CD y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 E 出发沿折线段 ED DA 向点 A 运动,运动的时间为 t ( 0 t < 6 ) 秒,设 ΔBOP 与矩形 AOED 重叠部分的面积为 S

(1)求点 D 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;

(3)在点 P 的运动过程中,是否存在点 P ,使 ΔBEP 为等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O AB : BC = 3 : 2 ,过点 B BE / / AC ,过点 C CE / / DB BE CE 交于点 E ,连接 DE ,则 tan EDC = (    )

A. 2 9 B. 1 4 C. 2 6 D. 3 10

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 4 BC = 6 ,点 P 是矩形 ABCD 内一动点,且 S ΔPAB = 1 2 S ΔPCD ,则 PC + PD 的最小值为  

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的边 AB x 轴上, AB BC 的长分别是一元二次方程 x 2 7 x + 12 = 0 的两个根 ( BC > AB ) OA = 2 OB ,边 CD y 轴于点 E ,动点 P 以每秒1个单位长度的速度,从点 A 出发沿折线段 AD DE 向点 E 运动,运动的时间为 t ( 0 t 6 ) 秒,设 ΔBPE 的面积为 S

(1)求点 D 的坐标;

(2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;

(3)在点 P 运动的过程中,是否存在点 P ,使 ΔBEP 是以 BE 为腰的等腰三角形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O AB : BC = 2 : 1 ,且 BE / / AC CE / / DB ,连接 DE ,则 tan EDC = (    )

A. 1 4 B. 1 6 C. 2 6 D. 3 10

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 BC = 4 M N 在对角线 AC 上,且 AM = CN E F 分别是 AD BC 的中点.

(1)求证: ΔABM ΔCDN

(2)点 G 是对角线 AC 上的点, EGF = 90 ° ,求 AG 的长.

来源:2019年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 5 CD = 4 ,点 E BC 边上的点, BE = 3 ,连接 AE DF AE 交于点 F

(1)求证: ΔABE ΔDFA

(2)连接 CF ,求 sin DCF 的值;

(3)连接 AC DF 于点 G ,求 AG GC 的值.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

初中数学矩形的性质试题