如图,矩形 中, , , 是边 上的动点, 是 的中点,以 为中心,将 绕点 顺时针旋转 , 的对应点为 ,当 、 、 在一条直线上时, .
如图,四边形 为矩形, 是对角线 的中点.连接 并延长至 ,使 ,以 , 为邻边作菱形 ,连接 .
(1)判断四边形 的形状,并证明你的结论.
(2)连接 ,若 ,求 的长.
在矩形 的 边上取一点 ,将 沿 翻折,使点 恰好落在 边上点 处.
(1)如图1,若 ,求 的度数;
(2)如图2,当 ,且 时,求 的长;
(3)如图3,延长 ,与 的角平分线交于点 , 交 于点 ,当 时,求 的值.
如图,在矩形 中, , , , 分别为 , 边的中点.动点 从点 出发沿 向点 运动,同时,动点 从点 出发沿 向点 运动,连接 ,过点 作 于点 ,连接 .若点 的速度是点 的速度的2倍,在点 从点 运动至点 的过程中,线段 长度的最大值为 ,线段 长度的最小值为 .
如图,在矩形 中, 是 边的中点, ,垂足为 ,连接 ,下列四个结论:① ;② ;③ ;④ ,正确的是
A.①②③B.②③④C.①③④D.①②④
如图,矩形 中, 是 上一点,连接 ,将矩形沿 翻折,使点 落在 边 处,连接 ,在 上取点 ,以 为圆心, 长为半径作 与 相切于点 .若 , ,则下列结论:① 是 的中点;② 的半径是2;③ ;④ .其中正确结论的序号是 .
如图1,把一张正方形纸片对折得到长方形 ,再沿 的平分线 折叠,如图2,点 落在点 处,最后按图3所示方式折叠,使点 落在 的中点 处,折痕是 ,若原正方形纸片的边长为 ,则 .
如图,在矩形 中,对角线 的垂直平分线 分别交 、 、 于点 、 、 ,连接 和 .
(1)求证:四边形 为菱形;
(2)若 , ,求菱形 的周长.
如图,在平面直角坐标系中,矩形 的边 在 轴上, 、 的长分别是一元二次方程 的两个根 , ,边 交 轴于点 ,动点 以每秒1个单位长度的速度,从点 出发沿折线段 向点 运动,运动的时间为 秒,设 与矩形 重叠部分的面积为 .
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量的取值范围;
(3)在点 的运动过程中,是否存在点 ,使 为等腰三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图,矩形 的对角线 、 相交于点 , ,过点 作 ,过点 作 , 、 交于点 ,连接 ,则
A. B. C. D.
如图,在平面直角坐标系中,矩形 的边 在 轴上, 、 的长分别是一元二次方程 的两个根 , ,边 交 轴于点 ,动点 以每秒1个单位长度的速度,从点 出发沿折线段 向点 运动,运动的时间为 秒,设 的面积为 .
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量的取值范围;
(3)在点 运动的过程中,是否存在点 ,使 是以 为腰的等腰三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图,矩形 的对角线 、 相交于点 , ,且 , ,连接 ,则
A. B. C. D.
如图,在矩形 中, , . 、 在对角线 上,且 , 、 分别是 、 的中点.
(1)求证: ;
(2)点 是对角线 上的点, ,求 的长.