如图1,在矩形 中, ,动点 从 出发,以每秒1个单位的速度,沿射线 方向移动,作 关于直线 的对称 ,设点 的运动时间为 .
(1)若 .
①如图2,当点 落在 上时,显然 是直角三角形,求此时 的值;
②是否存在异于图2的时刻,使得 是直角三角形?若存在,请直接写出所有符合题意的 的值?若不存在,请说明理由.
(2)当 点不与 点重合时,若直线 与直线 相交于点 ,且当 时存在某一时刻有结论 成立,试探究:对于 的任意时刻,结论“ ”是否总是成立?请说明理由.
下列结论中,矩形具有而菱形不一定具有的性质是
A.内角和为 B.对角线互相平分
C.对角线相等D.对角线互相垂直
如图,有一张长方形纸片 , , ,点 为 上一点,将纸片沿 折叠, 的对应边 恰好经过点 ,则线段 的长为 .
如图,在矩形 中, , ,将矩形 绕点 逆时针旋转得到矩形 , 交 于点 ,且 ,则 的长为
A.3B. C. D.
如图,矩形 中, , ,点 、 分别在 、 上,且 .
(1)求证:四边形 是菱形;
(2)求线段 的长.
已知矩形 中, ,点 为对角线 上的一点,且 .如图①,动点 从点 出发,在矩形边上沿着 的方向匀速运动(不包含点 ).设动点 的运动时间为 , 的面积为 , 与 的函数关系如图②所示.
(1)直接写出动点 的运动速度为 , 的长度为 ;
(2)如图③,动点 重新从点 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点 从点 出发,在矩形边上沿着 的方向匀速运动,设动点 的运动速度为 .已知两动点 , 经过时间 在线段 上相遇(不包含点 ),动点 , 相遇后立即同时停止运动,记此时 与 的面积分别为 ,
①求动点 运动速度 的取值范围;
②试探究 是否存在最大值,若存在,求出 的最大值并确定运动时间 的值;若不存在,请说明理由.
如图,矩形 中, , . , 分别在 , 上,点 与点 关于 所在的直线对称, 是边 上的一动点.
(1)连接 , ,求证四边形 是菱形;
(2)当 的周长最小时,求 的值;
(3)连接 交 于点 ,当 时,求 的长.
如图,在 中, .将 沿着 方向平移得到 ,其中点 在边 上, 与 相交于点 .
(1)求证: 为等腰三角形;
(2)连接 、 、 ,当点 在什么位置时,四边形 为矩形,并说明理由.
如图,在矩形 中, , ,以点 为圆心作 与直线 相切,点 是 上一个动点,连接 交 于点 ,则 的最大值是 .
如图,在矩形 中, , , 是 的中点,将 沿 折叠,点 落在矩形内点 处,连接 ,则 .
如图,在矩形 中, ,点 是 的中点,点 在 上, ,点 、 在线段 上.若 是等腰三角形且底角与 相等,则 .
如图,矩形纸片 中, , .现将其沿 对折,使得点 落在边 上的点 处,折痕与边 交于点 ,则 的长为
A. B. C. D.