初中数学

如图,四边形 ABCD 是平行四边形, E F 是对角线 BD 上的两点,且 BF = ED ,求证: AE / / CF

来源:2017年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为矩形, G 是对角线 BD 的中点.连接 GC 并延长至 F ,使 CF = GC ,以 DC CF 为邻边作菱形 DCFE ,连接 CE

(1)判断四边形 CEDG 的形状,并证明你的结论.

(2)连接 DF ,若 BC = 3 ,求 DF 的长.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, BAC = 90 ° AB = AC ,过点 A 作边 BC 的垂线 AF DC 的延长线于点 E ,点 F 是垂足,连接 BE DF DF AC 于点 O .则下列结论:①四边形 ABEC 是正方形;② CO : BE = 1 : 3 ;③ DE = 2 BC ;④ S 四边形OCEF = S ΔAOD ,正确的个数是 (    )

A.1B.2C.3D.4

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O AB : BC = 2 : 1 ,且 BE / / AC CE / / DB ,连接 DE ,则 tan EDC = (    )

A. 1 4 B. 1 6 C. 2 6 D. 3 10

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° D E 分别是 AB AC 的中点,连接 CD ,过 E EF / / DC BC 的延长线于 F

(1)证明:四边形 CDEF 是平行四边形;

(2)若四边形 CDEF 的周长是 25 cm AC 的长为 5 cm ,求线段 AB 的长度.

来源:2018年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形,延长 AD 至点 E ,使 DE = AD ,连接 BD

(1)求证:四边形 BCED 是平行四边形;

(2)若 DA = DB = 2 cos A = 1 4 ,求点 B 到点 E 的距离.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,点 E F 在对角线 AC 上,且 AE = CF .求证:

(1) DE = BF

(2)四边形 DEBF 是平行四边形.

来源:2016年青海省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

已知:如图,平行四边形 ABCD ,对角线 AC BD 相交于点 E ,点 G AD 的中点,连接 CG CG 的延长线交 BA 的延长线于点 F ,连接 FD

(1)求证: AB = AF

(2)若 AG = AB BCD = 120 ° ,判断四边形 ACDF 的形状,并证明你的结论.

来源:2018年山东省青岛市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, E BC 边的中点,连接 DE 并延长,交 AB 的延长线于点 F AB = BF .添加一个条件使四边形 ABCD 是平行四边形,你认为下面四个条件中可选择的是 (    )

A. AD = BC B. CD = BF C. A = C D. F = CDF

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,反比例函数 y = 3 x 与一次函数 y = x 2 在第三象限交于点 A ,点 B 的坐标为 ( 3 , 0 ) ,点 P y 轴左侧的一点,若以 A O B P 为顶点的四边形为平行四边形,则点 P 的坐标为  

来源:2018年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

边长为6的等边 ΔABC 中,点 D E 分别在 AC BC 边上, DE / / AB EC = 2 3

(1)如图1,将 ΔDEC 沿射线 EC 方向平移,得到△ D ' E ' C ' ,边 D ' E ' AC 的交点为 M ,边 C ' D ' ACC ' 的角平分线交于点 N ,当 CC ' 多大时,四边形 MCND ' 为菱形?并说明理由.

(2)如图2,将 ΔDEC 绕点 C 旋转 α ( 0 ° < α < 360 ° ) ,得到△ D ' E ' C ,连接 AD ' BE ' .边 D ' E ' 的中点为 P

①在旋转过程中, AD ' BE ' 有怎样的数量关系?并说明理由;

②连接 AP ,当 AP 最大时,求 AD ' 的值.(结果保留根号)

来源:2017年山东省潍坊市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形, AD = AC AD AC E AB 的中点, F AC 延长线上一点.

(1)若 ED EF ,求证: ED = EF

(2)在(1)的条件下,若 DC 的延长线与 FB 交于点 P ,试判定四边形 ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);

(3)若 ED = EF ED EF 垂直吗?若垂直给出证明,若不垂直说明理由.

来源:2017年山东省泰安市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

某学习小组的学生在学习中遇到了下面的问题:

如图1,在 ΔABC ΔADE 中, ACB = AED = 90 ° CAB = EAD = 60 ° ,点 E A C 在同一条直线上,连接 BD ,点 F BD 的中点,连接 EF CF ,试判断 ΔCEF 的形状并说明理由.

问题探究:

(1)小婷同学提出解题思路:先探究 ΔCEF 的两条边是否相等,如 EF = CF ,以下是她的证明过程

证明:延长线段 EF CB 的延长线于点 G

F BD 的中点,

BF = DF

ACB = AED = 90 °

ED / / CG

BGF = DEF

BFG = DFE

ΔBGF ΔDEF (   AAS   )

EF = FG

CF = EF = 1 2 EG

请根据以上证明过程,解答下列两个问题:

①在图1中作出证明中所描述的辅助线;

②在证明的括号中填写理由(请在 SAS ASA AAS SSS 中选择).

(2)在(1)的探究结论的基础上,请你帮助小婷求出 CEF 的度数,并判断 ΔCEF 的形状.

问题拓展:

(3)如图2,当 ΔADE 绕点 A 逆时针旋转某个角度时,连接 CE ,延长 DE BC 的延长线于点 P ,其他条件不变,判断 ΔCEF 的形状并给出证明.

来源:2017年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O ,延长 CB 至点 E ,使 BE = BC ,连按 AE

(1)求证:四边形 ADBE 是平行四边形;

(2)若 AB = 4 OB = 5 2 ,求四边形 ADBE 的周长.

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BAD DCB 的平分线 AE CF 分别交 BC AD 于点 E F ,点 M N 分别为 AE CF 的中点,连接 FM EN ,试判断 FM EN 的数量关系和位置关系,并加以证明.

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

初中数学平行四边形的判定与性质试题