如图,△ABC的顶点坐标分别为A(2,3),B(1,1),C(3,2).
(1)将△ABC向下平移4个单位长度,画出平移后的△A1B1C1;
(2)画出△ABC关于y轴对称的△A2B2C2;.
(3)求出△ABC的面积.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,
连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的长.
(本小题满分6分)如图,在平面直角坐标系中,的顶点坐标为、
、.
(1)若将向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的;
(2)画出绕原点旋转后得到
的;
(3)与是位似图形,请写出位似中心的坐标: ;
(4)顺次连结、、、,所得到的图形是轴对称图形吗? (填“是”或“不是”)
(本小题满分6分)设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,请你将⊙O与正方形的公共点个数
填入下表:
(2)如图②,当r=a时,根据d与a、r之间关系,
请你写出⊙O与正方形的公共点个数。
当r=a时,⊙O与正方形的公共点个数可能有 个;
(3)如图③,当⊙O与正方形有5个公共点时,
r= (请用a的代数式表示r,不必说理)
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.
(1)该顾客至少可得到 元购物券,至多可得到 元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号)
已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
求证:(1)△BFC≌△DFC;(2)AD=DE.
如图直角坐标系中,已知A(-4,0),B(0,3),点M在线段AB上
(1)如图1,如果点M是线段AB的中点,且的半径为2,试判断直线OB与的位置关系,并说明理由;
(2)如图2,与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标
某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(本题6分)如图所示,已知线段,请作出一个等腰△ABC,使底边AC=,且AC边上的高线长为.(要求尺规作图,保留作图痕迹,不需要写出作法)