初中数学

已知两个二次函数 y 1 = x 2 + bx + c y 2 = x 2 + m .对于函数 y 1 ,当 x = 2 时,该函数取最小值.

(1)求 b 的值;

(2)若函数 y 1 的图象与坐标轴只有2个不同的公共点,求这两个公共点间的距离;

(3)若函数 y 1 y 2 的图象都经过点 ( 1 , - 2 ) ,过点 ( 0 a - 3 ) ( a 为实数)作 x 轴的平行线,与函数 y 1 y 2 的图象共有4个不同的交点,这4个交点的横坐标分别是 x 1 x 2 x 3 x 4 ,且 x 1 < x 2 < x 3 < x 4 ,求 x 4 - x 3 + x 2 - x 1 的最大值.

来源:2016年江苏省泰州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,将二次函数 y = x 2 - 1 的图象 M 沿 x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象 N

(1)求 N 的函数表达式;

(2)设点 P ( m , n ) 是以点 C ( 1 , 4 ) 为圆心、1为半径的圆上一动点,二次函数的图象 M x 轴相交于两点 A B ,求 P A 2 + P B 2 的最大值;

(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求 M N 所围成封闭图形内(包括边界)整点的个数.

来源:2016年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

抛物线 y = - x 2 + 2 x + n 经过点 M ( - 1 , 0 ) ,顶点为 C

(1)求点 C 的坐标;

(2)设直线 y = 2 x 与抛物线交于 A B 两点(点 A 在点 B 的左侧).

①在抛物线的对称轴上是否存在点 G .使 AGC = BGC ?若存在,求出点 G 的坐标;若不存在,请说明理由;

②点 P 在直线 y = 2 x 上,点 Q 在抛物线上,当以 O M P Q 为顶点的四边形是平行四边形时,求点 Q 的坐标.

来源:2016年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系 xOy 中,点 C ( 3 , 0 ) ,函数 y = k x ( k > 0 , x > 0 ) 的图象经过 OABC 的顶点 A ( m , n ) 和边 BC 的中点 D

(1)求 m 的值;

(2)若 ΔOAD 的面积等于6,求 k 的值;

(3)若 P 为函数 y = = k x ( k > 0 , x > 0 ) 的图象上一个动点,过点 P 作直线 l x 轴于点 M ,直线 l x 轴上方的 OABC 的一边交于点 N ,设点 P 的横坐标为 t ,当 PN PM = 1 4 时,求 t 的值.

来源:2016年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx - 3 ( a 0 ) 的顶点为 E ,该抛物线与 x 轴交于 A B 两点,与 y 轴交于点 C ,且 BO = OC = 3 AO ,直线 y = - 1 3 x + 1 y 轴交于点 D

(1)求抛物线的解析式;

(2)证明: ΔDBO ΔEBC

(3)在抛物线的对称轴上是否存在点 P ,使 ΔPBC 是等腰三角形?若存在,请直接写出符合条件的 P 点坐标,若不存在,请说明理由.

来源:2016年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于原点及点 A ,且经过点 B ( 4 , 8 ) ,对称轴为直线 x = - 2

(1)求抛物线的解析式;

(2)设直线 y = kx + 4 与抛物线两交点的横坐标分别为 x 1 x 2 ( x 1 < x 2 ) ,当 1 x 2 - 1 x 1 = 1 2 时,求 k 的值;

(3)连接 OB ,点 P x 轴下方抛物线上一动点,过点 P OB 的平行线交直线 AB 于点 Q ,当 S ΔPOQ : S ΔBOQ = 1 : 2 时,求出点 P 的坐标.

(坐标平面内两点 M ( x 1 y 1 ) N ( x 2 y 2 ) 之间的距离 MN = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 )

来源:2018年湖北省荆门市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

计算下列各题:(每小题5分,共10分)
(1)        
(2)+

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

问题背景:

如图①,在四边形 ADBC 中, ACB = ADB = 90 ° AD = BD ,探究线段 AC BC CD 之间的数量关系.

小吴同学探究此问题的思路是:将 ΔBCD 绕点 D ,逆时针旋转 90 ° ΔAED 处,点 B C 分别落在点 A E 处(如图② ) ,易证点 C A E 在同一条直线上,并且 ΔCDE 是等腰直角三角形,所以 CE = 2 CD ,从而得出结论: AC + BC = 2 CD

简单应用:

(1)在图①中,若 AC = 2 BC = 2 2 ,则 CD =   

(2)如图③, AB O 的直径,点 C D 上, AD ̂ = BD ̂ ,若 AB = 13 BC = 12 ,求 CD 的长.

拓展规律:

(3)如图④, ACB = ADB = 90 ° AD = BD ,若 AC = m BC = n ( m < n ) ,求 CD 的长(用含 m n 的代数式表示)

(4)如图⑤, ACB = 90 ° AC = BC ,点 P AB 的中点,若点 E 满足 AE = 1 3 AC CE = CA ,点 Q AE 的中点,则线段 PQ AC 的数量关系是  

来源:2016年江苏省淮安市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为1,点 P 在射线 BC 上(异于点 B C ) ,直线 AP 与对角线 BD 及射线 DC 分别交于点 F Q

(1)若 BP = 3 3 ,求 BAP 的度数;

(2)若点 P 在线段 BC 上,过点 F FG CD ,垂足为 G ,当 ΔFGC ΔQCP 时,求 PC 的长;

(3)以 PQ 为直径作 M

①判断 FC M 的位置关系,并说明理由;

②当直线 BD M 相切时,直接写出 PC 的长.

来源:2016年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

已知抛物线 y = a ( x - 1 ) 2 过点 ( 3 , 1 ) D 为抛物线的顶点.

(1)求抛物线的解析式;

(2)若点 B C 均在抛物线上,其中点 B ( 0 , 1 4 ) ,且 BDC = 90 ° ,求点 C 的坐标;

(3)如图,直线 y = kx + 4 - k 与抛物线交于 P Q 两点.

①求证: PDQ = 90 °

②求 ΔPDQ 面积的最小值.

来源:2018年湖北省黄石市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,已知抛物线y=ax2+bx+c(a≠0)交x轴于A(﹣1,0),B(5,0)两点,与y轴交于点C(0,2)

(1)求抛物线的解析式;
(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积;
(3)连接AC,在x轴上是否存在点P使△ACP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线y=-x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(-1,0).

(1)求B,C两点坐标;
(2)求该二次函数的关系式;
(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角坐标系 xOy 中,菱形 OABC 的边 OA x 轴正半轴上,点 B C 在第一象限, C = 120 ° ,边长 OA = 8 .点 M 从原点 O 出发沿 x 轴正半轴以每秒1个单位长的速度作匀速运动,点 N A 出发沿边 AB - BC - CO 以每秒2个单位长的速度作匀速运动,过点 M 作直线 MP 垂直于 x 轴并交折线 OCB P ,交对角线 OB Q ,点 M 和点 N 同时出发,分别沿各自路线运动,点 N 运动到原点 O 时, M N 两点同时停止运动.

(1)当 t = 2 时,求线段 PQ 的长;

(2)求 t 为何值时,点 P N 重合;

(3)设 ΔAPN 的面积为 S ,求 S t 的函数关系式及 t 的取值范围.

来源:2018年湖北省黄冈市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学计算题