初中数学

如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E.

(1)求证:ON是⊙A的切线;
(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.

(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

平面直角坐标系 xOy 中,点 A B 的横坐标分别为 a a + 2 ,二次函数 y = - x 2 + ( m - 2 ) x + 2 m 的图象经过点 A B ,且 a m 满足 2 a - m = d ( d 为常数).

(1)若一次函数 y 1 = kx + b 的图象经过 A B 两点.

①当 a = 1 d = - 1 时,求 k 的值;

②若 y x 的增大而减小,求 d 的取值范围;

(2)当 d = - 4 a - 2 a - 4 时,判断直线 AB x 轴的位置关系,并说明理由;

(3)点 A B 的位置随着 a 的变化而变化,设点 A B 运动的路线与 y 轴分别相交于点 C D ,线段 CD 的长度会发生变化吗?如果不变,求出 CD 的长;如果变化,请说明理由.

来源:2017年江苏省泰州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

(概念认识)

城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系 xOy ,对两点 A ( x 1 y 1 ) B ( x 2 y 2 ) ,用以下方式定义两点间距离: d ( A , B ) = | x 1 - x 2 | + | y 1 - y 2 |

(数学理解)

(1)①已知点 A ( - 2 , 1 ) ,则 d ( O , A ) =            

②函数 y = - 2 x + 4 ( 0 x 2 ) 的图象如图①所示, B 是图象上一点, d ( O , B ) = 3 ,则点 B 的坐标是        

(2)函数 y = 4 x ( x > 0 ) 的图象如图②所示.求证:该函数的图象上不存在点 C ,使 d ( O , C ) = 3

(3)函数 y = x 2 - 5 x + 7 ( x 0 ) 的图象如图③所示, D 是图象上一点,求 d ( O , D ) 的最小值及对应的点 D 的坐标.

(问题解决)

(4)某市要修建一条通往景观湖的道路,如图④,道路以 M 为起点,先沿 MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)

来源:2019年江苏省南京市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

中, 分别为所对的边,我们称关于的一元二次方程为“的☆方程”.根据规定解答下列问题:
(1)“的☆方程”的根的情况是   (填序号);①有两个相等的实数根;②有两个不相等的实数根;③没有实数根.
(2)如图,为⊙的直径,点为⊙上的一点,的平分线交⊙于点
求“的☆方程”的解;

(3)若是“的☆方程”的一个根,其中均为正整数,且,求:①求的值;②求“的☆方程”的另一个根.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,抛物线 C 1 : y = a x 2 - 2 ax + c ( a < 0 ) x 轴交于 A B 两点,与 y 轴交于点 C .已知点 A 的坐标为 ( - 1 , 0 ) ,点 O 为坐标原点, OC = 3 OA ,抛物线 C 1 的顶点为 G

(1)求出抛物线 C 1 的解析式,并写出点 G 的坐标;

(2)如图2,将抛物线 C 1 向下平移 k ( k > 0 ) 个单位,得到抛物线 C 2 ,设 C 2 x 轴的交点为 A ' B ' ,顶点为 G ' ,当△ A ' B ' G ' 是等边三角形时,求 k 的值:

(3)在(2)的条件下,如图3,设点 M x 轴正半轴上一动点,过点 M x 轴的垂线分别交抛物线 C 1 C 2 P Q 两点,试探究在直线 y = - 1 上是否存在点 N ,使得以 P Q N 为顶点的三角形与 ΔAOQ 全等,若存在,直接写出点 M N 的坐标:若不存在,请说明理由.

来源:2018年湖北省随州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在矩形纸片 ABCD 中,已知 AB = 1 BC = 3 ,点 E 在边 CD 上移动,连接 AE ,将多边形 ABCE 沿直线 AE 翻折,得到多边形 AB ' C ' E ,点 B C 的对应点分别为点 B ' C '

(1)当 B ' C ' 恰好经过点 D 时(如图 1 ),求线段 CE 的长;

(2)若 B ' C ' 分别交边 AD CD 于点 F G ,且 DAE = 22 . 5 ° (如图 2 ) ,求 ΔDFG 的面积;

(3)在点 E 从点 C 移动到点 D 的过程中,求点 C ' 运动的路径长.

来源:2017年江苏省宿迁市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 + bx + c 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C OB = OC .点 D 在函数图象上, CD / / x 轴,且 CD = 2 ,直线 l 是抛物线的对称轴, E 是抛物线的顶点.

(1)求 b c 的值;

(2)如图①,连接 BE ,线段 OC 上的点 F 关于直线 l 的对称点 F ' 恰好在线段 BE 上,求点 F 的坐标;

(3)如图②,动点 P 在线段 OB 上,过点 P x 轴的垂线分别与 BC 交于点 M ,与抛物线交于点 N .试问:抛物线上是否存在点 Q ,使得 ΔPQN ΔAPM 的面积相等,且线段 NQ 的长度最小?如果存在,求出点 Q 的坐标;如果不存在,说明理由.

来源:2017年江苏省苏州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.

(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;
(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;
(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①,在 ΔABC 中, AB = AC = 3 BAC = 100 ° D BC 的中点.小明对图①进行了如下探究:在线段 AD 上任取一点 P ,连接 PB .将线段 PB 绕点 P 按逆时针方向旋转 80 ° ,点 B 的对应点是点 E ,连接 BE ,得到 ΔBPE .小明发现,随着点 P 在线段 AD 上位置的变化,点 E 的位置也在变化,点 E 可能在直线 AD 的左侧,也可能在直线 AD 上,还可能在直线 AD 的右侧.

请你帮助小明继续探究,并解答下列问题:

(1)当点 E 在直线 AD 上时,如图②所示.

BEP =        °

②连接 CE ,直线 CE 与直线 AB 的位置关系是      

(2)请在图③中画出 ΔBPE ,使点 E 在直线 AD 的右侧,连接 CE .试判断直线 CE 与直线 AB 的位置关系,并说明理由.

(3)当点 P 在线段 AD 上运动时,求 AE 的最小值.

来源:2019年江苏省淮安市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,P(m,n)是抛物线y=x2-1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.
(1)填空:当m=0时,OP=    ,PH=    ;当m=4时,OP=    ,PH=   
(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.
(3)连接OH,是否存在这样的点P,使得△OPH为等边三角形?如果存在,求出点P的坐标;如果不存在,请说明理由.
(4)如图2,已知线段AB=6,端点A,B在抛物线y=x2-1上滑动,求A,B两点到直线l的距离之和的最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直线 y = kx + b 与抛物线 y = a x 2 ( a > 0 ) 相交于 A B 两点(点 A 在点 B 的左侧),与 y 轴正半轴相交于点 C ,过点 A AD x 轴,垂足为 D

(1)若 AOB = 60 ° AB / / x 轴, AB = 2 ,求 a 的值;

(2)若 AOB = 90 ° ,点 A 的横坐标为 - 4 AC = 4 BC ,求点 B 的坐标;

(3)延长 AD BO 相交于点 E ,求证: DE = CO

来源:2017年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

折纸的思考.

(操作体验)

用一张矩形纸片折等边三角形.

第一步,对折矩形纸片 ABCD ( AB > BC ) (图①),使 AB DC 重合,得到折痕 EF ,把纸片展平(图②).

第二步,如图③,再一次折叠纸片,使点 C 落在 EF 上的 P 处,并使折痕经过点 B ,得到折痕 BG ,折出 PB PC ,得到 ΔPBC

(1)说明 ΔPBC 是等边三角形.

(数学思考)

(2)如图④,小明画出了图③的矩形 ABCD 和等边三角形 PBC .他发现,在矩形 ABCD 中把 ΔPBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.

(3)已知矩形一边长为 3 cm ,另一边长为 acm ,对于每一个确定的 a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的 a 的取值范围.

(问题解决)

(4)用一张正方形铁片剪一个直角边长分别为 4 cm 1 cm 的直角三角形铁片,所需正方形铁片的边长的最小值为        cm

来源:2017年江苏省南京市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

问题呈现:

如图1,点 E F G H 分别在矩形 ABCD 的边 AB BC CD DA 上, AE = DG ,求证: 2 S 四边形 EFGH = S 矩形 ABCD .( S 表示面积)

实验探究:

某数学实验小组发现:若图1中 AH BF ,点 G CD 上移动时,上述结论会发生变化,分别过点 E G BC 边的平行线,再分别过点 F H AB 边的平行线,四条平行线分别相交于点 A 1 B 1 C 1 D 1 ,得到矩形 A 1 B 1 C 1 D 1

如图2,当 AH > BF 时,若将点 G 向点 C 靠近 ( DG > AE ) ,经过探索,发现: 2 S 四边形 EFGH = S 矩形 ABCD + S 矩形 A 1 B 1 C 1 D 1

如图3,当 AH > BF 时,若将点 G 向点 D 靠近 ( DG < AE ) ,请探索 S 四边形 EFGH S 矩形 ABCD S 矩形 A 1 B 1 C 1 D 1 之间的数量关系,并说明理由.

迁移应用:

请直接应用“实验探究”中发现的结论解答下列问题:

(1)如图4,点 E F G H 分别是面积为25的正方形 ABCD 各边上的点,已知 AH > BF AE > DG S 四边形 EFGH = 11 HF = 29 ,求 EG 的长.

(2)如图5,在矩形 ABCD 中, AB = 3 AD = 5 ,点 E H 分别在边 AB AD 上, BE = 1 DH = 2 ,点 F G 分别是边 BC CD 上的动点,且 FG = 10 ,连接 EF HG ,请直接写出四边形 EFGH 面积的最大值.

来源:2017年江苏省连云港市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c 经过 A ( - 1 , 0 ) B ( 4 , 0 ) C ( 0 , 4 ) 三点.

(1)求抛物线的解析式及顶点 D 的坐标;

(2)将(1)中的抛物线向下平移 15 4 个单位长度,再向左平移 h ( h > 0 ) 个单位长度,得到新抛物线.若新抛物线的顶点 D ' ΔABC 内,求 h 的取值范围;

(3)点 P 为线段 BC 上一动点(点 P 不与点 B C 重合),过点 P x 轴的垂线交(1)中的抛物线于点 Q ,当 ΔPQC ΔABC 相似时,求 ΔPQC 的面积.

来源:2019年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学计算题