首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 计算题
  • 难度 较难
  • 浏览 97

问题呈现:

如图1,点 E F G H 分别在矩形 ABCD 的边 AB BC CD DA 上, AE = DG ,求证: 2 S 四边形 EFGH = S 矩形 ABCD .( S 表示面积)

实验探究:

某数学实验小组发现:若图1中 AH BF ,点 G CD 上移动时,上述结论会发生变化,分别过点 E G BC 边的平行线,再分别过点 F H AB 边的平行线,四条平行线分别相交于点 A 1 B 1 C 1 D 1 ,得到矩形 A 1 B 1 C 1 D 1

如图2,当 AH > BF 时,若将点 G 向点 C 靠近 ( DG > AE ) ,经过探索,发现: 2 S 四边形 EFGH = S 矩形 ABCD + S 矩形 A 1 B 1 C 1 D 1

如图3,当 AH > BF 时,若将点 G 向点 D 靠近 ( DG < AE ) ,请探索 S 四边形 EFGH S 矩形 ABCD S 矩形 A 1 B 1 C 1 D 1 之间的数量关系,并说明理由.

迁移应用:

请直接应用“实验探究”中发现的结论解答下列问题:

(1)如图4,点 E F G H 分别是面积为25的正方形 ABCD 各边上的点,已知 AH > BF AE > DG S 四边形 EFGH = 11 HF = 29 ,求 EG 的长.

(2)如图5,在矩形 ABCD 中, AB = 3 AD = 5 ,点 E H 分别在边 AB AD 上, BE = 1 DH = 2 ,点 F G 分别是边 BC CD 上的动点,且 FG = 10 ,连接 EF HG ,请直接写出四边形 EFGH 面积的最大值.

登录免费查看答案和解析

问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB