已知在 中, 是 的中点, 是 延长线上的一点,连结 , .
(1)如图1,若 , , , ,求 的长.
(2)过点 作 ,交 延长线于点 ,如图2所示,若 , ,求证: .
(3)如图3,若 ,是否存在实数 ,当 时, ?若存在,请写出 的值;若不存在,请说明理由.
如图, 是 的直径, , 是 的弦, 为 的中点, 与 交于点 ,过点 作 ,交 的延长线于点 ,且 平分 .
(1)求证: 是 的切线;
(2)求证: ;
(3)若 , ,求 的长.
如图,点 在以 为直径的 上,过 作 的切线交 延长线于点 , 于点 ,交 于点 ,连接 , .
(1)求证: ;
(2)求证: ;
(3)若 , ,求 的长.
已知,在 中, , .
(1)如图1,已知点 在 边上, , ,连结 .试探究 与 的关系;
(2)如图2,已知点 在 下方, , ,连结 .若 , , , 交 于点 ,求 的长;
(3)如图3,已知点 在 下方,连结 、 、 .若 , , , ,求 的值.
如图1, 为 上一点,点 在直径 的延长线上,且 .
(1)判断直线 与 的位置关系,并说明理由;
(2)若 , ,求 的半径;
(3)如图2,在(2)的条件下, 的平分线 交 于点 ,交 于点 ,连结 .求 的值.
如图,点 在正方形 边 上,点 是线段 上的动点(不与点 重合), 交 于点 , 于点 , , .
(1)求 ;
(2)设 , ,试探究 与 的函数关系式(写出 的取值范围);
(3)当 时,判断 与 的位置关系并说明理由.
在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作 , , 等大小的角,可以采用如下方法:
操作感知:
第一步:对折矩形纸片 ,使 与 重合,得到折痕 ,把纸片展开(如图1 .
第二步:再一次折叠纸片,使点 落在 上,并使折痕经过点 ,得到折痕 ,同时得到线段 (如图 .
猜想论证:
(1)若延长 交 于点 ,如图3所示,试判定 的形状,并证明你的结论.
拓展探究:
(2)在图3中,若 , ,当 , 满足什么关系时,才能在矩形纸片 中剪出符合(1)中结论的三角形纸片 ?
如图,已知 是等边三角形, 是 内部的一点,连接 , .
(1)如图1,以 为直径的半圆 交 于点 ,交 于点 ,当点 在 上时,连接 ,在 边的下方作 , ,连接 ,求 的度数;
(2)如图2, 是 边上一点,且 ,当 时,连接 并延长,交 于点 ,若 ,求证: ;
(3)如图3, 是 边上一点,当 时,连接 .若 , , , 的面积为 , 的面积为 ,求 的值(用含 的代数式表示).
如图,已知 是等边三角形, 是 内部的一点,连接 , .
(1)如图1,以 为直径的半圆 交 于点 ,交 于点 ,当点 在 上时,连接 ,在 边的下方作 , ,连接 ,求 的度数;
(2)如图2, 是 边上一点,且 ,当 时,连接 并延长,交 于点 ,若 ,求证: ;
(3)如图3, 是 边上一点,当 时,连接 .若 , , , 的面积为 , 的面积为 ,求 的值(用含 的代数式表示).
在 中, , 平分 ,交对角线 于点 ,交射线 于点 ,将线段 绕点 顺时针旋转 得线段 .
(1)如图1,当 时,连接 ,请直接写出线段 和线段 的数量关系;
(2)如图2,当 时,过点 作 于点,连接 ,请写出线段 , , 之间的数量关系,并说明理由;
(3)当 时,连接 ,若 ,请直接写出 与 面积的比值.
在一次数学探究活动中,李老师设计了一份活动单:
已知线段 ,使用作图工具作 ,尝试操作后思考: (1)这样的点 唯一吗? (2)点 的位置有什么特征?你有什么感悟? |
“追梦”学习小组通过操作、观察、讨论后汇报:点 的位置不唯一,它在以 为弦的圆弧上(点 、 除外), .小华同学画出了符合要求的一条圆弧(如图 .
(1)小华同学提出了下列问题,请你帮助解决.
①该弧所在圆的半径长为 ;
② 面积的最大值为 ;
(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 ,请你根据图1证明 .
(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 的边长 , ,点 在直线 的左侧,且 .
①线段 长的最小值为 ;
②若 ,则线段 长为 .
如图①,甲、乙都是高为6米的长方体容器,容器甲的底面 是正方形,容器乙的底面 是矩形.如图②,已知正方形 与矩形 满足如下条件:正方形 外切于一个半径为5米的圆 ,矩形 内接于这个圆 , .
(1)求容器甲、乙的容积分别为多少立方米?
(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米 小时,4小时后,把容器甲的注水流量增加 立方米 小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米 小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为 时,我们把容器甲的水位高度记为 ,容器乙的水位高度记为 ,设 ,已知 (米 关于注水时间 (小时)的函数图象如图③所示,其中 平行于横轴,根据图中所给信息,解决下列问题:
①求 的值;
②求图③中线段 所在直线的解析式.
如图,在矩形 中, , .动点 从点 出发沿折线 向终点 运动,在边 上以 的速度运动;在边 上以 的速度运动,过点 作线段 与射线 相交于点 ,且 ,连接 , .设点 的运动时间为 , 与 重合部分图形的面积为 .
(1)当点 与点 重合时,直接写出 的长;
(2)当点 在边 上运动时,直接写出 的长(用含 的代数式表示);
(3)求 关于 的函数解析式,并写出自变量 的取值范围.
如图,在 中, , , ,点 为边 的中点.动点 从点 出发,沿折线 以每秒1个单位长度的速度向点 运动,当点 不与点 、 重合时,连结 .作点 关于直线 的对称点 ,连结 、 .设点 的运动时间为 秒.
(1)线段 的长为 ;
(2)用含 的代数式表示线段 的长;
(3)当点 在 内部时,求 的取值范围;
(4)当 与 相等时,直接写出 的值.