如图,在直角坐标系 中,菱形 的边 在 轴正半轴上,点 , 在第一象限, ,边长 .点 从原点 出发沿 轴正半轴以每秒1个单位长的速度作匀速运动,点 从 出发沿边 以每秒2个单位长的速度作匀速运动,过点 作直线 垂直于 轴并交折线 于 ,交对角线 于 ,点 和点 同时出发,分别沿各自路线运动,点 运动到原点 时, 和 两点同时停止运动.
(1)当 时,求线段 的长;
(2)求 为何值时,点 与 重合;
(3)设 的面积为 ,求 与 的函数关系式及 的取值范围.
如图1,在矩形 中, ,动点 从 出发,以每秒1个单位的速度,沿射线 方向移动,作 关于直线 的对称 ,设点 的运动时间为 .
(1)若 .
①如图2,当点 落在 上时,显然 是直角三角形,求此时 的值;
②是否存在异于图2的时刻,使得 是直角三角形?若存在,请直接写出所有符合题意的 的值?若不存在,请说明理由.
(2)当 点不与 点重合时,若直线 与直线 相交于点 ,且当 时存在某一时刻有结论 成立,试探究:对于 的任意时刻,结论“ ”是否总是成立?请说明理由.
(回顾)
如图1, 中, , , ,则 的面积等于 .
(探究)
图2是同学们熟悉的一副三角尺,一个含有 的角,较短的直角边长为 ;另一个含有 的角,直角边长为 ,小明用两副这样的三角尺拼成一个平行四边形 (如图 ,用了两种不同的方法计算它的面积,从而推出 ,小丽用两副这样的三角尺拼成了一个矩形 (如图 ,也推出 ,请你写出小明或小丽推出 的具体说理过程.
(应用)
在四边形 中, , , , , (如图5)
(1)点 在 上,设 ,求 的最小值;
(2)点 在 上,将 沿 翻折,点 落在 上的点 处,点 是 的中点吗?说明理由.
如图,正方形 的边长为1,点 在射线 上(异于点 、 ,直线 与对角线 及射线 分别交于点 、
(1)若 ,求 的度数;
(2)若点 在线段 上,过点 作 ,垂足为 ,当 时,求 的长;
(3)以 为直径作 .
①判断 和 的位置关系,并说明理由;
②当直线 与 相切时,直接写出 的长.
如图,矩形 中,点 为对角线 所在直线上的一个动点,连接 ,过点 作 ,交直线 于点 ,过点 作 ,交直线 于点 ,交直线 于点 . , .
(1)如图1,①当点 在线段 上时, 和 的数量关系为: ;
② 的值是 ;
(2)如图2,当点 在 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;
(3)如图3,以线段 , 为邻边作矩形 .设 的长为 ,矩形 的面积为 .请直接写出 与 之间的函数关系式及 的最小值.
如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)