如图,已知 ΔABC 是等边三角形, P 是 ΔABC 内部的一点,连接 BP , CP .
(1)如图1,以 BC 为直径的半圆 O 交 AB 于点 Q ,交 AC 于点 R ,当点 P 在 QR ̂ 上时,连接 AP ,在 BC 边的下方作 ∠ BCD = ∠ BAP , CD = AP ,连接 DP ,求 ∠ CPD 的度数;
(2)如图2, E 是 BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB ;
(3)如图3, M 是 AC 边上一点,当 AM = 2 MC 时,连接 MP .若 ∠ CMP = 150 ° , AB = 6 a , MP = 3 a , ΔABC 的面积为 S 1 , ΔBCP 的面积为 S 2 ,求 S 1 − S 2 的值(用含 a 的代数式表示).
某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下.请根据图中信息,解答下列问题: (1)a=%,b=%,“总是”对应阴影的圆心角为°; (2)请你补全条形统计图; (3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名? (4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?
小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品. (1)如果随机翻1张牌,那么抽中20元奖品的概率为; (2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?
(1)解方程:; (2)解不等式组:.
计算:(1); (2).
如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C. (1)求此抛物线的解析式; (2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径; (3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.