初中数学

如图, O 是正方形 ABCD 的内切圆,切点分别为 E F G H ED O 相交于点 M ,则 sin MFG 的值为   

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O AB : BC = 3 : 2 ,过点 B BE / / AC ,过点 C CE / / DB BE CE 交于点 E ,连接 DE ,则 tan EDC = (    )

A. 2 9 B. 1 4 C. 2 6 D. 3 10

来源:2019年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, O 是对角线 AC BD 的交点, BE AC DF AC ,垂足分别为点 E F

(1)求证: OE = OF

(2)若 BE = 5 OF = 2 ,求 tan OBE 的值.

来源:2020年吉林省长春市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,二次函数的图象与轴交于点,过点轴的平行线交抛物线于另一点,抛物线过点,且顶点为,连接

(1)填空:   

(2)点是抛物线上一点,点的横坐标大于1,直线交直线于点.若,求点的坐标;

(3)点在直线上,点关于直线对称的点为,点关于直线对称的点为,连接.当点轴上时,直接写出的长.

来源:2020年江苏省常州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E BC 的延长线上,连接 DE ,点 F DE 的中点,连接 OF CD 于点 G ,连接 CF ,若 CE = 4 OF = 6 .则下列结论:① GF = 2 ;② OD = 2 OG ;③ tan CDE = 1 2 ;④ ODF = OCF = 90 ° ;⑤点 D CF 的距离为 8 5 5 .其中正确的结论是 (    )

A.

①②③④

B.

①③④⑤

C.

①②③⑤

D.

①②④⑤

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, BAD = 120 ° DE BC BC 的延长线于点 E .连结 AE BD 于点 F ,交 CD 于点 G FH CD 于点 H ,连结 CF .有下列结论:① AF = CF ;② A F 2 = EF FG ;③ FG : EG = 4 : 5 ;④ cos GFH = 3 21 14 .其中所有正确结论的序号为   

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边.若不改变矩形的形状和大小,当矩形顶点轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.

(1)当时,求点的坐标;

(2)设的中点为,连接,当四边形的面积为时,求的长;

(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.

来源:2019年湖南省益阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 中, AD / / BC AD AB AD = AB = 1 DC = 5 ,以 A 为圆心, AD 为半径作圆,延长 CD A 于点 F ,延长 DA A 于点 E ,连结 BF ,交 DE 于点 G

(1)求证: BC A 的切线;

(2)求 cos EDF 的值;

(3)求线段 BG 的长.

来源:2021年广西柳州市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,抛物线经过点,与轴相交于两点.

(1)求抛物线的函数表达式;

(2)点在抛物线的对称轴上,且位于轴的上方,将沿直线翻折得到△,若点恰好落在抛物线的对称轴上,求点和点的坐标;

(3)设是抛物线上位于对称轴右侧的一点,点在抛物线的对称轴上,当为等边三角形时,求直线的函数表达式.

来源:2019年四川省成都市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,抛物线经过轴上的点和点轴上的点,经过两点的直线为

①求抛物线的解析式.

②点出发,在线段上以每秒1个单位的速度向运动,同时点出发,在线段上以每秒2个单位的速度向运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为秒,求为何值时,的面积最大并求出最大值.

③过点于点,过抛物线上一动点(不与点重合)作直线的平行线交直线于点.若点为顶点的四边形是平行四边形,求点的横坐标.

来源:2019年四川省巴中市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O D O 的直径 AB 的延长线上一点, DCB = OAC .过圆心 O BC 的平行线交 DC 的延长线于点 E

(1)求证: CD O 的切线;

(2)若 CD = 4 CE = 6 ,求 O 的半径及 tan OCB 的值.

来源:2021年甘肃省武威市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图1,直线 y = x + 1 与抛物线 y = 2 x 2 相交于 A B 两点,与 y 轴交于点 M M N 关于 x 轴对称,连接 AN BN

(1)①求 A B 的坐标;②求证: ANM = BNM

(2)如图2,将题中直线 y = x + 1 变为 y = kx + b ( b > 0 ) ,抛物线 y = 2 x 2 变为 y = a x 2 ( a > 0 ) ,其他条件不变,那么 ANM = BNM 是否仍然成立?请说明理由.

来源:2017年湖南省益阳市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB 是直径, CD 是弦, AB CD ,垂足为 P ,过点 D O 的切线与 AB 延长线交于点 E ,连接 CE

(1)求证: CE O 的切线;

(2)若 O 半径为3, CE = 4 ,求 sin DEC

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 中, C = 90 ° ,点 M 从点 C 出发沿 CB 方向以 1 cm / s 的速度匀速运动,到达点 B 停止运动,在点 M 的运动过程中,过点 M 作直线 MN AC 于点 N ,且保持 NMC = 45 ° ,再过点 N AC 的垂线交 AB 于点 F ,连接 MF .将 ΔMNF 关于直线 NF 对称后得到 ΔENF ,已知 AC = 8 cm BC = 4 cm ,设点 M 运动时间为 t ( s ) ΔENF ΔANF 重叠部分的面积为 y ( c m 2 )

(1)在点 M 的运动过程中,能否使得四边形 MNEF 为正方形?如果能,求出相应的 t 值;如果不能,说明理由;

(2)求 y 关于 t 的函数解析式及相应 t 的取值范围;

(3)当 y 取最大值时,求 sin NEF 的值.

来源:2017年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图所示,四边形 ABCD 为正方形,在 ΔECH 中, ECH = 90 ° CE = CH HE 的延长线与 CD 的延长线交于点 F ,点 D B H 在同一条直线上.

(1)求证: ΔCDE ΔCBH

(2)当 HB HD = 1 5 时,求 FD FC 的值;

(3)当 HB = 3 HG = 4 时,求 sin CFE 的值.

来源:2021年黑龙江省绥化市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学锐角三角函数的定义试题