如图,已知 ΔABC 中, ∠ C = 90 ° ,点 M 从点 C 出发沿 CB 方向以 1 cm / s 的速度匀速运动,到达点 B 停止运动,在点 M 的运动过程中,过点 M 作直线 MN 交 AC 于点 N ,且保持 ∠ NMC = 45 ° ,再过点 N 作 AC 的垂线交 AB 于点 F ,连接 MF .将 ΔMNF 关于直线 NF 对称后得到 ΔENF ,已知 AC = 8 cm , BC = 4 cm ,设点 M 运动时间为 t ( s ) , ΔENF 与 ΔANF 重叠部分的面积为 y ( c m 2 ) .
(1)在点 M 的运动过程中,能否使得四边形 MNEF 为正方形?如果能,求出相应的 t 值;如果不能,说明理由;
(2)求 y 关于 t 的函数解析式及相应 t 的取值范围;
(3)当 y 取最大值时,求 sin ∠ NEF 的值.
如图,边长分别为1,2,3,4,……,2007,2008的正 方形叠放在一起,请计算图中阴影部分的面积.
已知是方程组的解,试求的值。
先化简,(x-1)(x-2)+3x(x+3)-4(x+2)(x-3),再选择一个你喜欢的数,代入x后求值.
先化简,后求值:,其中.
因式分解: