如图,已知 ΔABC 中, ∠ C = 90 ° ,点 M 从点 C 出发沿 CB 方向以 1 cm / s 的速度匀速运动,到达点 B 停止运动,在点 M 的运动过程中,过点 M 作直线 MN 交 AC 于点 N ,且保持 ∠ NMC = 45 ° ,再过点 N 作 AC 的垂线交 AB 于点 F ,连接 MF .将 ΔMNF 关于直线 NF 对称后得到 ΔENF ,已知 AC = 8 cm , BC = 4 cm ,设点 M 运动时间为 t ( s ) , ΔENF 与 ΔANF 重叠部分的面积为 y ( c m 2 ) .
(1)在点 M 的运动过程中,能否使得四边形 MNEF 为正方形?如果能,求出相应的 t 值;如果不能,说明理由;
(2)求 y 关于 t 的函数解析式及相应 t 的取值范围;
(3)当 y 取最大值时,求 sin ∠ NEF 的值.
一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图。
化简求值: (1)6a+7a-5a-6a,其中a=-3; (2)2(ab+ab)-3(ab-1)-2ab-2,其中a=-2,b=2.
计算:-2+3×(-1)-(-2)
简便运算:(+-)×24
如图,是舟山--嘉兴的高速公路示意图,王老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了20千米/小时,比去时少用了1小时回到舟山. (1)求舟山与嘉兴两地间的高速公路路程; (2)两座跨海大桥的长度及过桥费见下表: 我省交通部门规定:轿车的高速公路通行费(元)的计算方法为:,其中a元/(千米)为高速公路里程费,(千米)为高速公路里程数(不包括跨海大桥长),(元)为跨海大桥过桥费.若王老师从舟山到嘉兴所花的高速公路通行费为277.4元,求轿车的高速公路里程费.