如图,在 中,点 为斜边 上一动点,将 沿直线 折叠,使得点 的对应点为 ,连接 , , , .
(1)如图①,若 ,证明: .
(2)如图②,若 , ,求 的值.
(3)如图③,若 ,是否存在点 ,使得 .若存在,求此时 的值;若不存在,请说明理由.
如图,点 在以 为直径的 上, 的角平分线与 相交于点 ,与 相交于点 ,延长 至 ,连结 ,使得 ,过点 作 的平行线与 的延长线交于点 .
(1)求证: 与 相切;
(2)试给出 、 、 之间的数量关系,并予以证明.
如图,在半径为 的 中, 是 的直径, 是过 上一点 的直线,且 于点 , 平分 , 是 的中点, .
(1)求证: 是 的切线;
(2)求 的长.
如图, 的顶点坐标分别为 , , ,动点 、 同时从点 出发,分别沿 轴正方向和 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点 到达点 时点 、 同时停止运动.过点 作 分别交 、 于点 、 ,连接 、 .设运动时间为 (秒 .
(1)求点 的坐标(用含 的式子表示);
(2)求四边形 面积的最大值或最小值;
(3)是否存在这样的直线 ,总能平分四边形 的面积?如果存在,请求出直线 的解析式;如果不存在,请说明理由;
(4)连接 ,当 时,求点 到 的距离.
如图1,在 中, , 是 边上的一点, 为 的中点,过点 作 的平行线交 的延长线于 ,且 ,连接 .
(1)求证: ;
(2)在图1中 上取一点 ,使 ,作 关于边 的对称点 ,连接 、 、 、 、 得图2.
①求证: ;
②设 与 相交于点 ,求证: , .
如图,在 中, ,以 的中点 为圆心, 为直径的圆交 于 , 是 的中点, 交 的延长线于 .
(1)求证: 是圆 的切线:
(2)若 , ,求 的长.
如图,在 中, , 轴, 为坐标原点, 的坐标为 ,反比例函数 的图象的一支过 点,反比例函数 的图象的一支过 点,过 作 轴于 ,若 的面积为 .
(1)求 的值;
(2)求反比例函数 的解析式.
如图,在矩形 中, 是边 上一点, , ,垂足为 .将四边形 绕点 顺时针旋转 ,得到四边形 , 所在的直线分别交直线 于点 ,交直线 于点 ,交 于点 . 所在的直线分别交直线 于点 ,交直线 于点 ,连接 交 于点 .
(1)如图1,求证:四边形 是正方形;
(2)如图2,当点 和点 重合时.
①求证: ;
②若 , ,求线段 的长;
(3)如图3,若 交 于点 , ,求 的值.
如图,在菱形 中, 是对角线 上一点 , ,垂足为 ,以 为半径的 分别交 于点 ,交 的延长线于点 , 与 交于点 .
(1)求证: 是 的切线;
(2)若 是 的中点, , .
①求 的长;
②求 的长.
在 中, , , 是边 上一点,将 沿 折叠得到 ,连接 .
(1)特例发现
如图1,当 , 落在直线 上时.
①求证: ;
②填空: 的值为 ;
(2)类比探究
如图2,当 , 与边 相交时,在 上取一点 ,使 , 交 于点 .探究 的值(用含 的式子表示),并写出探究过程;
(3)拓展运用
在(2)的条件下,当 , 是 的中点时,若 ,求 的长.
问题提出
如图(1),在 和 中, , , ,点 在 内部,直线 与 于点 .线段 , , 之间存在怎样的数量关系?
问题探究
(1)先将问题特殊化如图(2),当点 , 重合时,直接写出一个等式,表示 , , 之间的数量关系;
(2)再探究一般情形如图(1),当点 , 不重合时,证明(1)中的结论仍然成立.
问题拓展
如图(3),在 和 中, , , 是常数),点 在 内部,直线 与 交于点 .直接写出一个等式,表示线段 , , 之间的数量关系.
如图, 是 的直径, , 是 上两点, 是 的中点,过点 作 的垂线,垂足是 .连接 交 于点 .
(1)求证: 是 的切线;
(2)若 ,求 的值.
如图, 是以 为直径的 上一点,过点 的切线 交 的延长线于点 ,过点 作 交 的延长线于点 ,垂足为点 .
(1)求证: ;
(2)若 的直径 为9, .
①求线段 的长;
②求线段 的长.
如图,已知 是 的直径, 为 上一点, 的角平分线交 于点 , 在直线 上,且 ,垂足为 ,连接 、 .
(1)求证: 是 的切线;
(2)若 , 的半径为3,求 的长.