如图, ΔOAB 的顶点坐标分别为 O ( 0 , 0 ) , A ( 3 , 4 ) , B ( 6 , 0 ) ,动点 P 、 Q 同时从点 O 出发,分别沿 x 轴正方向和 y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点 P 到达点 B 时点 P 、 Q 同时停止运动.过点 Q 作 MN / / OB 分别交 AO 、 AB 于点 M 、 N ,连接 PM 、 PN .设运动时间为 t (秒 ) .
(1)求点 M 的坐标(用含 t 的式子表示);
(2)求四边形 MNBP 面积的最大值或最小值;
(3)是否存在这样的直线 l ,总能平分四边形 MNBP 的面积?如果存在,请求出直线 l 的解析式;如果不存在,请说明理由;
(4)连接 AP ,当 ∠ OAP = ∠ BPN 时,求点 N 到 OA 的距离.
(12分)如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F. (1)求证:△CEB≌△ADC;(2)若AD=9cm,DE=6cm,求BE及EF的长.
(10分)如图,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2. (1)求证:四边形ABCD是矩形; (2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.
(10分)如图是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题:(1)田径队共有多少人? (2)该队队员年龄的众数和中位数分别是多少? (3)该队队员的平均年龄是多少?
(10分)我市某企业向玉树地震灾区捐助价值26万元的甲、乙两种帐篷共300顶.已知甲种帐篷每顶800元,乙种帐篷每顶1000元,问甲、乙两种帐篷各多少顶?
(8分)已知一次函数y=kx-4,当x=2时,y=-3. (1)求一次函数的解析式; (2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.