初中数学

已知抛物线 y = x 2 + 2 x + 8 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C

(1)求点 B C 的坐标;

(2)设点 C ' 与点 C 关于该抛物线的对称轴对称.在 y 轴上是否存在点 P ,使 ΔPCC ' ΔPOB 相似,且 PC PO 是对应边?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC O ΔABC 的外接圆, AE 是直径,交 BC 于点 H ,点 D AC ̂ 上,连接 AD CD 过点 E EF / / BC AD 的延长线于点 F ,延长 BC AF 于点 G

(1)求证: EF O 的切线;

(2)若 BC = 2 AH = CG = 3 ,求 EF CD 的长.

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 是等边三角形, P ΔABC 内部的一点,连接 BP CP

(1)如图1,以 BC 为直径的半圆 O AB 于点 Q ,交 AC 于点 R ,当点 P QR ̂ 上时,连接 AP ,在 BC 边的下方作 BCD = BAP CD = AP ,连接 DP ,求 CPD 的度数;

(2)如图2, E BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB

(3)如图3, M AC 边上一点,当 AM = 2 MC 时,连接 MP .若 CMP = 150 ° AB = 6 a MP = 3 a ΔABC 的面积为 S 1 ΔBCP 的面积为 S 2 ,求 S 1 S 2 的值(用含 a 的代数式表示).

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中, AD BC 边上的高,以 AD 为直径的 O AB 于点 E ,交 AC 于点 F ,过点 F FG AB ,垂足为 H ,交 AE ̂ 于点 G ,交 AD 于点 M ,连接 AG DE DF

(1)求证: GAD + EDF = 180 °

(2)若 ACB = 45 ° AD = 4 tan ABC = 2 ,求 HF 的长.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 是等边三角形, P ΔABC 内部的一点,连接 BP CP

(1)如图1,以 BC 为直径的半圆 O AB 于点 Q ,交 AC 于点 R ,当点 P QR ̂ 上时,连接 AP ,在 BC 边的下方作 BCD = BAP CD = AP ,连接 DP ,求 CPD 的度数;

(2)如图2, E BC 边上一点,且 EC = 3 BE ,当 BP = CP 时,连接 EP 并延长,交 AC 于点 F ,若 7 AB = 4 BP ,求证: 4 EF = 3 AB

(3)如图3, M AC 边上一点,当 AM = 2 MC 时,连接 MP .若 CMP = 150 ° AB = 6 a MP = 3 a ΔABC 的面积为 S 1 ΔBCP 的面积为 S 2 ,求 S 1 S 2 的值(用含 a 的代数式表示).

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中, AD BC 边上的高,以 AD 为直径的 O AB 于点 E ,交 AC 于点 F ,过点 F FG AB ,垂足为 H ,交 AE ̂ 于点 G ,交 AD 于点 M ,连接 AG DE DF

(1)求证: GAD + EDF = 180 °

(2)若 ACB = 45 ° AD = 4 tan ABC = 2 ,求 HF 的长.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知 AB O 的任意一条直径.

(1)用图1,求证: O 是以直径 AB 所在直线为对称轴的轴对称图形;

(2)已知 O 的面积为 4 π ,直线 CD O 相切于点 C ,过点 B BD CD ,垂足为 D ,如图2.

求证:① 1 2 B C 2 = 2 BD

②改变图2中切点 C 的位置,使得线段 OD BC 时, OD = 2 2

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔDEF 都是等腰直角三角形, AB = AC BAC = 90 ° DE = DF EDF = 90 ° D BC 边中点,连接 AF ,且 A F E 三点恰好在一条直线上, EF BC 于点 H ,连接 BF CE

(1)求证: AF = CE

(2)猜想 CE BF BC 之间的数量关系,并证明;

(3)若 CH = 2 AH = 4 ,请写出线段 AC AE 的长.

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

【阅读】

通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是"数形结合"思想的典型应用.

【理解】

(1)如图1, AC BC CD AB ,垂足分别为 C D E AB 的中点,连接 CE .已知 AD = a BD = b ( 0 < a < b )

①分别求线段 CE CD 的长(用含 a b 的代数式表示);

②比较大小: CE     CD (填" < "、" = "或" > " ) ,并用含 a b 的代数式表示该大小关系.

【应用】

(2)如图2,在平面直角坐标系 xOy 中,点 M N 在反比例函数 y = 1 x ( x > 0 ) 的图象上,横坐标分别为 m n .设 p = m + n q = 1 m + 1 n ,记 l = 1 4 pq

①当 m = 1 n = 2 时, l =   ;当 m = 3 n = 3 时, l =   

②通过归纳猜想,可得 l 的最小值是   .请根据图2构造恰当的图形,并说明你的猜想成立.

来源:2021年江苏省常州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径,点 C D O 上不同的两点,直线 BD 交线段 OC 于点 E 、交过点 C 的直线 CF 于点 F ,若 OC = 3 CE ,且 9 ( E F 2 - C F 2 ) = O C 2

(1)求证:直线 CF O 的切线;

(2)连接 OD AD AC DC ,若 COD = 2 BOC

①求证: ΔACD ΔOBE

②过点 E EG / / AB ,交线段 AC 于点 G ,点 M 为线段 AC 的中点,若 AD = 4 ,求线段 MG 的长度.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图1, AB O 的直径,点 E O 上一动点,且不与 A B 两点重合, EAB 的平分线交 O 于点 C ,过点 C CD AE ,交 AE 的延长线于点 D

(1)求证: CD O 的切线;

(2)求证: A C 2 = 2 AD AO

(3)如图2,原有条件不变,连接 BE BC ,延长 AB 至点 M EBM 的平分线交 AC 的延长线于点 P CAB 的平分线交 CBM 的平分线于点 Q .求证:无论点 E 如何运动,总有 P = Q

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图, ΔOAB 的顶点坐标分别为 O ( 0 , 0 ) A ( 3 , 4 ) B ( 6 , 0 ) ,动点 P Q 同时从点 O 出发,分别沿 x 轴正方向和 y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点 P 到达点 B 时点 P Q 同时停止运动.过点 Q MN / / OB 分别交 AO AB 于点 M N ,连接 PM PN .设运动时间为 t (秒 )

(1)求点 M 的坐标(用含 t 的式子表示);

(2)求四边形 MNBP 面积的最大值或最小值;

(3)是否存在这样的直线 l ,总能平分四边形 MNBP 的面积?如果存在,请求出直线 l 的解析式;如果不存在,请说明理由;

(4)连接 AP ,当 OAP = BPN 时,求点 N OA 的距离.

来源:2021年湖南省衡阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E 是边 AB 上一点, BE = BC EF CD ,垂足为 F .将四边形 CBEF 绕点 C 顺时针旋转 α ( 0 ° < α < 90 ° ) ,得到四边形 C B ' E ' F ' B ' E ' 所在的直线分别交直线 BC 于点 G ,交直线 AD 于点 P ,交 CD 于点 K E ' F ' 所在的直线分别交直线 BC 于点 H ,交直线 AD 于点 Q ,连接 B ' F ' CD 于点 O

(1)如图1,求证:四边形 BEFC 是正方形;

(2)如图2,当点 Q 和点 D 重合时.

①求证: GC = DC

②若 OK = 1 CO = 2 ,求线段 GP 的长;

(3)如图3,若 BM / / F ' B ' GP 于点 M tan G = 1 2 ,求 S ΔGMB S CF ' H 的值.

来源:2021年湖北省宜昌市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题