初中数学

如图, ΔABC 内接于 O AB = AC BAC = 36 ° ,过点 A AD / / BC ,与 ABC 的平分线交于点 D BD AC 交于点 E ,与 O 交于点 F

(1)求 DAF 的度数;

(2)求证: A E 2 = EF · ED

(3)求证: AD O 的切线.

来源:2018年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在△ ABC中,∠ ABC=90°,以 AB的中点 O为圆心, OA为半径的圆交 AC于点 DEBC的中点,连结 DEOE

(1)判断 DE与⊙ O的位置关系,并说明理由.

(2)求证: BC 2=2 CDOE

来源:2018年内蒙古兴安盟中考数学试卷(a卷)
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 2 B = 45 ° C = 60 °

(1)求 BC 边上的高线长.

(2)点 E 为线段 AB 的中点,点 F 在边 AC 上,连结 EF ,沿 EF ΔAEF 折叠得到 ΔPEF

①如图2,当点 P 落在 BC 上时,求 AEP 的度数.

②如图3,连结 AP ,当 PF AC 时,求 AP 的长.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 BCAC,圆心 OAC上,点 M与点 C分别是 AC与⊙ O的交点,点 DMB与⊙ O的交点,点 PAD延长线与 BC的交点,且 AD AP AM AO

(1)求证: PD是⊙ O的切线;

(2)若 AD=12, AMMC,求 BP MD 的值.

来源:2018年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图, CD O 的切线,点 C 在直径 AB 的延长线上.

(1)求证: CAD = BDC

(2)若 BD = 2 3 AD AC = 3 ,求 CD 的长.

来源:2018年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD中, AB=3, BC=5, EAD上的一个动点.

(1)如图1,连接 BDO是对角线 BD的中点,连接 OE.当 OEDE时,求 AE的长;

(2)如图2,连接 BEEC,过点 EEFECAB于点 F,连接 CF,与 BE交于点 G.当 BE平分∠ ABC时,求 BG的长;

(3)如图3,连接 EC,点 HCD上,将矩形 ABCD沿直线 EH折叠,折叠后点 D落在 EC上的点 D'处,过点 D′作 DNAD于点 N,与 EH交于点 M,且 AE=1.

①求 S E D ' M S EMN 的值;

②连接 BE,△ D' MH与△ CBE是否相似?请说明理由.

来源:2018年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

已知:如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 M 是斜边 AB 的中点, MD / / BC ,且 MD = CM DE AB 于点 E ,连接 AD CD

(1)求证: ΔMED ΔBCA

(2)求证: ΔAMD ΔCMD

(3)设 ΔMDE 的面积为 S 1 ,四边形 BCMD 的面积为 S 2 ,当 S 2 = 17 5 S 1 时,求 cos ABC 的值.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ADC = B = 90 ° ,过点 D DE AB E ,若 DE = BE

(1)求证: DA = DC

(2)连接 AC DE 于点 F ,若 ADE = 30 ° AD = 6 ,求 DF 的长.

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

阅读与思考

请阅读下列科普材料,并完成相应的任务.

图算法

图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系: F = 9 5 C + 32 得出,当 C = 10 时, F = 50 .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种根据特制的线条进行计算的方法就是图算法.

再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?

我们可以根据公式 1 R = 1 R 1 + 1 R 2 求得 R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个 120 ° 的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.

图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.

任务:

(1)请根据以上材料简要说明图算法的优越性;

(2)请用以下两种方法验证第二个例子中图算法的正确性:

①用公式 1 R = 1 R 1 + 1 R 2 计算:当 R 1 = 7 . 5 R 2 = 5 时, R 的值为多少;

②如图,在 ΔAOB 中, AOB = 120 ° OC ΔAOB 的角平分线, OA = 7 . 5 OB = 5 ,用你所学的几何知识求线段 OC 的长.

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, O 为线段 PB 上一点,以 O 为圆心, OB 长为半径的 O PB 于点 A ,点 C O 上,连接 PC ,满足 P C 2 = PA PB

(1)求证: PC O 的切线;

(2)若 AB = 3 PA ,求 AC BC 的值.

来源:2021年江苏省盐城市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 8 BC = 4 CA = 6 CD / / AB BD ABC 的平分线, BD AC 于点 E ,求 AE 的长.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AG HAF 的平分线,点 E AF 上,以 AE 为直径的 O AG 于点 D ,过点 D AH 的垂线,垂足为点 C ,交 AF 于点 B

(1)求证:直线 BC O 的切线;

(2)若 AC = 2 CD ,设 O 的半径为 r ,求 BD 的长度.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB 于点 E ,点 F O 上一点,且 AC ̂ = CF ̂ ,连接 FB FD FD AB 于点 N

(1)若 AE = 1 CD = 6 ,求 O 的半径;

(2)求证: ΔBNF 为等腰三角形;

(3)连接 FC 并延长,交 BA 的延长线于点 P ,过点 D O 的切线,交 BA 的延长线于点 M .求证: ON · OP = OE · OM

来源:2019年广西柳州市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质解答题