初中数学

如图,将正方形纸片 ABCD 沿 PQ 折叠,使点 C 的对称点 E 落在边 AB 上,点 D 的对称点为点 F EF AD 于点 G ,连接 CG PQ 于点 H ,连接 CE .下列四个结论中:① ΔPBE ~ ΔQFG ;② S ΔCEG = S ΔCBE + S 四边形 CDQH ;③ EC 平分 BEG ;④ E G 2 - C H 2 = GQ GD ,正确的是   (填序号即可).

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, AB = AC ,点 D BC 边上一点(不与点 B C 重合),连结 AD

(1)如图1,若 C = 60 ° ,点 D 关于直线 AB 的对称点为点 E ,连结 AE DE ,则 BDE =   

(2)若 C = 60 ° ,将线段 AD 绕点 A 顺时针旋转 60 ° 得到线段 AE ,连结 BE

①在图2中补全图形;

②探究 CD BE 的数量关系,并证明;

(3)如图3,若 AB BC = AD DE = k ,且 ADE = C .试探究 BE BD AC 之间满足的数量关系,并证明.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 BC = 5 ,点 D E 分别在 BC AC 上, CD = 2 BD CE = 2 AE BE AD 于点 F ,则 ΔAFE 面积的最大值是   

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,锐角三角形 ABC 内接于 O BAC 的平分线 AG O 于点 G ,交 BC 边于点 F ,连接 BG

(1)求证: ΔABG ΔAFC

(2)已知 AB = a AC = AF = b ,求线段 FG 的长(用含 a b 的代数式表示).

(3)已知点 E 在线段 AF 上(不与点 A ,点 F 重合),点 D 在线段 AE 上(不与点 A ,点 E 重合), ABD = CBE ,求证: B G 2 = GE GD

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, BE ΔABC 的中线,点 F BE 上,延长 AF BC 于点 D .若 BF = 3 FE ,则 BD DC =   

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 O 是对角线 BD 的中点,点 P 在线段 OD 上,连接 AP 并延长交 CD 于点 E ,过点 P PF AP BC 于点 F ,连接 AF EF AF BD G ,现有以下结论:① AP = PF ;② DE + BF = EF ;③ PB - PD = 2 BF ;④ S ΔAEF 为定值;⑤ S 四边形 PEFG = S ΔAPG .以上结论正确的有   (填入正确的序号即可).

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径,点 C D O 上不同的两点,直线 BD 交线段 OC 于点 E 、交过点 C 的直线 CF 于点 F ,若 OC = 3 CE ,且 9 ( E F 2 - C F 2 ) = O C 2

(1)求证:直线 CF O 的切线;

(2)连接 OD AD AC DC ,若 COD = 2 BOC

①求证: ΔACD ΔOBE

②过点 E EG / / AB ,交线段 AC 于点 G ,点 M 为线段 AC 的中点,若 AD = 4 ,求线段 MG 的长度.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图1, D O 上一点,点 C 在直径 BA 的延长线上,且 CDA = CBD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)若 tan ADC = 1 2 AC = 2 ,求 O 的半径;

(3)如图2,在(2)的条件下, ADB 的平分线 DE O 于点 E ,交 AB 于点 F ,连结 BE .求 sin DBE 的值.

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AB 的垂直平分线分别交 AB AC 于点 D E BE = 8 O ΔBCE 的外接圆,过点 E O 的切线 EF AB 于点 F ,则下列结论正确的是    . (写出所有正确结论的序号)

AE = BC

AED = CBD

③若 DBE = 40 ° ,则 DE ^ 的长为 8 π 9

DF EF = EF BF

⑤若 EF = 6 ,则 CE = 2 . 24

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:

【观察与猜想】

(1)如图1,在正方形 ABCD 中,点 E F 分别是 AB AD 上的两点,连接 DE CF DE CF ,则 DE CF 的值为   

(2)如图2,在矩形 ABCD 中, AD = 7 CD = 4 ,点 E AD 上的一点,连接 CE BD ,且 CE BD ,则 CE BD 的值为   

【类比探究】

(3)如图3,在四边形 ABCD 中, A = B = 90 ° ,点 E AB 上一点,连接 DE ,过点 C DE 的垂线交 ED 的延长线于点 G ,交 AD 的延长线于点 F ,求证: DE AB = CF AD

【拓展延伸】

(4)如图4,在 Rt Δ ABD 中, BAD = 90 ° AD = 9 tan ADB = 1 3 ,将 ΔABD 沿 BD 翻折,点 A 落在点 C 处得 ΔCBD ,点 E F 分别在边 AB AD 上,连接 DE CF DE CF

①求 DE CF 的值;

②连接 BF ,若 AE = 1 ,写出 BF 的长度.

来源:2021年四川省达州市中考数学试卷
  • 更新:2021-08-11
  • 题型:未知
  • 难度:未知

如图1,点 C 是半圆 O 的直径 AB 上一动点(不包括端点), AB = 6 cm ,过点 C CD AB 交半圆于点 D ,连结 AD ,过点 C CE / / AD 交半圆于点 E ,连结 EB .牛牛想探究在点 C 运动过程中 EC EB 的大小关系.他根据学习函数的经验,记 AC = xcm EC = y 1 cm EB = y 2 cm .请你一起参与探究函数 y 1 y 2 随自变量 x 变化的规律.

通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.

x

0.30

0.80

1.60

2.40

3.20

4.00

4.80

5.60

y 1

2.01

2.98

3.46

3.33

2.83

2.11

1.27

0.38

y 2

5.60

4.95

3.95

2.96

2.06

1.24

0.57

0.10

(1)当 x = 3 时, y 1 =   

(2)在图2中画出函数 y 2 的图象,并结合图象判断函数值 y 1 y 2 的大小关系.

(3)由(2)知" AC 取某值时,有 EC = EB ".如图3,牛牛连结了 OE ,尝试通过计算 EC EB 的长来验证这一结论,请你完成计算过程.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E 在边 AB 上, ΔBEC ΔFEC 关于直线 EC 对称,点 B 的对称点 F 在边 AD 上, G CD 中点,连结 BG 分别与 CE CF 交于 M N 两点.若 BM = BE MG = 1 ,则 BN 的长为    sin AFE 的值为   

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,点 D 在以 AB 为直径的 O 上,过 D O 的切线交 AB 延长线于点 C AE CD 于点 E ,交 O 于点 F ,连接 AD FD

(1)求证: DAE = DAC

(2)求证: DF AC = AD DC

(3)若 sin C = 1 4 AD = 4 10 ,求 EF 的长.

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形,过点 C O 的切线交 BA 的延长线于点 F AE O 的直径,连接 EC

(1)求证: ACF = B

(2)若 AB = BC AD BC 于点 D FC = 4 FA = 2 ,求 AD AE 的值.

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中, AD BC 边上的高,以 AD 为直径的 O AB 于点 E ,交 AC 于点 F ,过点 F FG AB ,垂足为 H ,交 AE ̂ 于点 G ,交 AD 于点 M ,连接 AG DE DF

(1)求证: GAD + EDF = 180 °

(2)若 ACB = 45 ° AD = 4 tan ABC = 2 ,求 HF 的长.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题