初中数学

如图, ΔABC 中,点 E BC 边上, AE = AB ,将线段 AC A 点旋转到 AF 的位置,使得 CAF = BAE ,连接 EF EF AC 交于点 G

(1)求证: EF = BC

(2)若 ABC = 65 ° ACB = 28 ° ,求 FGC 的度数.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图①,在中,,点分别在边上,,连接,点分别是的中点,连接

(1)的数量关系是      

(2)将绕点逆时针旋转到图②和图③的位置,判断有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.

来源:2020年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 均为等边三角形,连接 BE CD ,点 F G H 分别为 DE BE CD 中点.

(1)当 ΔADE 绕点 A 旋转时,如图1,则 ΔFGH 的形状为  ,说明理由;

(2)在 ΔADE 旋转的过程中,当 B D E 三点共线时,如图2,若 AB = 3 AD = 2 ,求线段 FH 的长;

(3)在 ΔADE 旋转的过程中,若 AB = a AD = b ( a > b > 0 ) ,则 ΔFGH 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

来源:2017年辽宁省锦州市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, O 为等边 ΔABC 的外接圆,半径为2,点 D 在劣弧 AB ̂ 上运动(不与点 A B 重合),连接 DA DB DC

(1)求证: DC ADB 的平分线;

(2)四边形 ADBC 的面积 S 是线段 DC 的长 x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;

(3)若点 M N 分别在线段 CA CB 上运动(不含端点),经过探究发现,点 D 运动到每一个确定的位置, ΔDMN 的周长有最小值 t ,随着点 D 的运动, t 的值会发生变化,求所有 t 值中的最大值.

来源:2020年广东省广州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = BC D AB 边上一点(点 D A B 不重合),连接 CD ,将线段 CD 绕点 C 按逆时针方向旋转 90 ° 得到线段 CE ,连接 DE BC 于点 F ,连接 BE

(1)求证: ΔACD ΔBCE

(2)当 AD = BF 时,求 BEF 的度数.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图①,等腰直角三角形的直角顶点为正方形的中心,点分别在上,现将绕点逆时针旋转,连接(如图②

(1)在图②中,  ;(用含的式子表示)

(2)在图②中猜想的数量关系,并证明你的结论.

来源:2019年湖北省荆州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° AC = 3 BC = 4 ,点 D E 分别在 AC BC 上(点 D 与点 A C 不重合),且 DEC = A ,将 ΔDCE 绕点 D 逆时针旋转 90 ° 得到△ DC ' E ' .当△ DC ' E ' 的斜边、直角边与 AB 分别相交于点 P Q (点 P 与点 Q 不重合)时,设 CD = x PQ = y

(1)求证: ADP = DEC

(2)求 y 关于 x 的函数解析式,并直接写出自变量 x 的取值范围.

来源:2017年辽宁省大连市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在矩形中,对角线的中点为,点在对角线上,,直线绕点逆时针旋转角,与边分别相交于点(点不与点重合).

(1)求证:四边形是平行四边形;

(2)若,求的长.

来源:2019年山东省日照市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, B = 90 ° AM ΔABC 的角平分线,过点 M MN AC 于点 N EMF = 135 ° .将 EMF 绕点 M 旋转,使 EMF 的两边交直线 AB 于点 E ,交直线 AC 于点 F ,请解答下列问题:

(1)当 EMF 绕点 M 旋转到如图①的位置时,求证: BE + CF = BM

(2)当 EMF 绕点 M 旋转到如图②,图③的位置时,请分别写出线段 BE CF BM 之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下, tan BEM = 3 AN = 2 + 1 ,则 BM =    CF =   

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC BD 相交于点 O AOB = 60 ° ,对角线 AC 所在的直线绕点 O 顺时针旋转角 α ( 0 ° < α < 120 ° ) ,所得的直线 l 分别交 AD BC 于点 E F

(1)求证: ΔAOE ΔCOF

(2)当旋转角 α 为多少度时,四边形 AFCE 为菱形?试说明理由.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, A = 90 ° AB = AC = 2 + 1 ,点 D E 分别在边 AB AC 上,且 AD = AE = 1 ,连接 DE .现将 ΔADE 绕点 A 顺时针方向旋转,旋转角为 α ( 0 ° < α < 360 ° ) ,如图2,连接 CE BD CD

(1)当 0 ° < α < 180 ° 时,求证: CE = BD

(2)如图3,当 α = 90 ° 时,延长 CE BD 于点 F ,求证: CF 垂直平分 BD

(3)在旋转过程中,求 ΔBCD 的面积的最大值,并写出此时旋转角 α 的度数.

来源:2020年山东省潍坊市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中, AB = 2 5 O BC 边的中点,点 E 是正方形内一动点, OE = 2 ,连接 DE ,将线段 DE 绕点 D 逆时针旋转 90 ° DF ,连接 AE CF

(1)求证: AE = CF

(2)若 A E O 三点共线,连接 OF ,求线段 OF 的长.

(3)求线段 OF 长的最小值.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,将 ΔABC 绕点 C 顺时针旋转得到 ΔDEC ,点 D 落在线段 AB 上,连接 BE

(1)求证: DC 平分 ADE

(2)试判断 BE AB 的位置关系,并说明理由;

(3)若 BE = BD ,求 tan ABC 的值.

来源:2020年四川省甘孜州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中,点 E AB 边上的一点,点 F 为对角线 BD 上的一点,且 EF AB

(1)若四边形 ABCD 为正方形.

①如图1,请直接写出 AE DF 的数量关系  DF = 2 AE  

②将 ΔEBF 绕点 B 逆时针旋转到图2所示的位置,连接 AE DF ,猜想 AE DF 的数量关系并说明理由;

(2)如图3,若四边形 ABCD 为矩形, BC = mAB ,其它条件都不变,将 ΔEBF 绕点 B 顺时针旋转 α ( 0 ° < α < 90 ° ) 得到△ E ' B F ' ,连接 A E ' D F ' ,请在图3中画出草图,并直接写出 A E ' D F ' 的数量关系.

来源:2017年辽宁省营口市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, ΔABC 在平面直角坐标系中,顶点的坐标分别为 A ( 4 , 4 ) B ( 1 , 1 ) C ( 4 , 1 )

(1)画出与 ΔABC 关于 y 轴对称的△ A 1 B 1 C 1

(2)将 ΔABC 绕点 O 1 顺时针旋转 90 ° 得到△ A 2 B 2 C 2 A A 2 弧是点 A 所经过的路径,则旋转中心 O 1 的坐标为   

(3)求图中阴影部分的面积(结果保留 π )

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

初中数学旋转的性质解答题