如图, Rt Δ ABC 中, ∠ ACB = 90 ° ,将 ΔABC 绕点 C 顺时针旋转得到 ΔDEC ,点 D 落在线段 AB 上,连接 BE .
(1)求证: DC 平分 ∠ ADE ;
(2)试判断 BE 与 AB 的位置关系,并说明理由;
(3)若 BE = BD ,求 tan ∠ ABC 的值.
某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
如图,一次函数y1=kx+b的图象与反比例函数的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0). (1)求这两个函数的解析式; (2)当x取何值时,y1>y2.
小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出). 请你根据图中提供的信息,解答下列问题: (1)计算被抽取的天数; (2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.
如图,已知菱形 A B C D 的对角线相交于点 O ,延长 A B 至点 E ,使 B E = A B ,连接 C E . (1)求证: B D = E C ; (2)若 ∠ E = 50 ° ,求 ∠ B A O 的大小.
解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.