如图,在平面直角坐标系中,已知点 ,以原点 为圆心、3为半径作圆. 从点 出发,以每秒1个单位的速度沿 轴正半轴运动,运动时间为 .连接 ,将 沿 翻折,得到 .求 有一边所在直线与 相切时 的值.
如图,在矩形纸片 中,已知 , ,点 在边 上移动,连接 ,将多边形 沿直线 翻折,得到多边形 ,点 、 的对应点分别为点 、 .
(1)当 恰好经过点 时(如图 ),求线段 的长;
(2)若 分别交边 , 于点 , ,且 (如图 ,求 的面积;
(3)在点 从点 移动到点 的过程中,求点 运动的路径长.
折纸的思考.
(操作体验)
用一张矩形纸片折等边三角形.
第一步,对折矩形纸片 (图①),使 与 重合,得到折痕 ,把纸片展平(图②).
第二步,如图③,再一次折叠纸片,使点 落在 上的 处,并使折痕经过点 ,得到折痕 ,折出 、 ,得到 .
(1)说明 是等边三角形.
(数学思考)
(2)如图④,小明画出了图③的矩形 和等边三角形 .他发现,在矩形 中把 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.
(3)已知矩形一边长为 ,另一边长为 ,对于每一个确定的 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的 的取值范围.
(问题解决)
(4)用一张正方形铁片剪一个直角边长分别为 和 的直角三角形铁片,所需正方形铁片的边长的最小值为 .
如图,已知等边三角形 与反比例函数 的图象交于 、 两点,将 沿直线 翻折,得到 ,点 的对应点为点 ,线段 交 轴于点 ,则 的值为 .(已知
如图,在矩形纸片 中, ,点 在边 上,将 沿直线 折叠,点 恰好落在对角线 上的点 处,若 ,则 的长是
A. B.6C.4D.5
如图,在平面直角坐标系中,坐标原点 是正方形 的一个顶点,已知点 坐标为 ,过点 , 作 轴,与边 交于点 (异于点 、 ,将四边形 沿 翻折,点 、 分别是点 、 的对应点,若点 恰好落在直线 上,则 的值等于
A. B. C.2D.3
如图, 为矩形 的对角线, 将边 沿 折叠, 使点 落在 上的点 处, 将边 沿 折叠, 使点 落在 上的点 处 .
(1) 求证: 四边形 是平行四边形;
(2) 若 , ,求四边形 的面积 .
如图,已知菱形 的边长2, ,点 、 分别在边 、 上,若将 沿直线 折叠,使得点 恰好落在 边的中点 处,则 .
如图,将边长为6的正方形纸片 对折,使 与 重合,折痕为 ,展平后,再将点 折到边 上,使边 经过点 ,折痕为 ,点 的对应点为 ,点 的对应点为
(1)若 ,则 (用含 的代数式表示);
(2)求折痕 的长.
如图,把正方形纸片 沿对边中点所在的直线对折后展开,折痕为 ,再过点 折叠纸片,使点 落在 上的点 处,折痕为 .若 的长为2,则 的长为
A.2B. C. D.1
如图,在 中, , ,点 、 分别在 、 上,且 ,将 沿 所在直线折叠得到△ (点 在四边形 内),连接 ,则 的长为 .
我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图, 为入射光线,入射点为 , 为法线(过入射点 且垂直于镜面的直线), 为反射光线,此时反射角 等于入射角 .
问题思考:
(1)如图1,一束光线从点 处入射到平面镜上,反射后恰好过点 ,请在图中确定平面镜上的入射点 ,保留作图痕迹,并简要说明理由;
(2)如图2,两平面镜 、 相交于点 ,且 ,一束光线从点 出发,经过平面镜反射后,恰好经过点 .小昕说,光线可以只经过平面镜 反射后过点 ,也可以只经过平面镜 反射后过点 .除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;
问题拓展:
(3)如图3,两平面镜 、 相交于点 ,且 ,一束光线从点 出发,且平行于平面镜 ,第一次在点 处反射,经过若干次反射后又回到了点 ,如果 和 的长均为 ,求这束光线经过的路程;
(4)如图4,两平面镜 、 相交于点 ,且 ,一束光线从点 出发,经过若干次反射后,最后反射出去时,光线平行于平面镜 .设光线出发时与射线 的夹角为 ,请直接写出满足条件的所有 的度数(注 、 足够长)
如图1,将正方形纸片 对折,使 与 重合,折痕为 .如图2,展开后再折叠一次,使点 与点 重合,折痕为 ,点 的对应点为点 , 交 于 .若 ,则 .
如图,在 中, , , ,点 在边 上,并且 ,点 为边 上的动点,将 沿直线 翻折,点 落在点 处,则点 到边 距离的最小值是 .