如图,CD是⊙O的弦,AB是直径,且 ,连接AC、AD、OD,其中 ,过点B的切线交CD的延长线于E.
(1)求证:DA平分∠CDO;
(2)若AB=12,求图中阴影部分的周长之和(参考数据: , ).
如图, 是 的直径, 直线 与 相切于点 ,且与 的延长线交于点 ,点 是 的中点 .
(1) 求证: ;
(2) 若 , 的半径为 3 ,一只蚂蚁从点 出发, 沿着 爬回至点 ,求蚂蚁爬过的路程 , , 结果保留一位小数) .
如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求 的长;
(Ⅱ)若 ,AD=AP,求证:PD是⊙O的切线.
如图,在 中, ,对角线 , 经过点 , ,与 交于点 ,连接 并延长与 交于点 ,与 的延长线交于点 , .
(1)求证: 是 的切线;
(2)若 ,求 的长(结果保留 .
如图,将 绕点 顺时针旋转 得到 ,点 的对应点 恰好落在 的延长线上,连接 .
(1)求证: ;
(2)若 , ,求 , 两点旋转所经过的路径长之和.
如图,在 中, ,点 是 边长一点, ,垂足为点 ,点 在线段 的延长线上,且 经过 , 两点.
(1)判断直线 与 的位置关系,并说明理由;
(2)若 的半径为2, 的长为 ,请求出 的度数.
如图,已知⊙O是△ABC的外接圆,且BC为⊙O的直径,在劣弧上取一点D,使
,将△ADC沿AD对折,得到△ADE,连接CE.
(1)求证:CE是⊙O的切线;
(2)若CECD,劣弧
的弧长为π,求⊙O的半径.
如图,已知 是 的直径, , 是 上的点, ,交 于点 ,连接 .
(1)求证: ;
(2)若 , ,求 的长.
在边长为1的正方形网格中如图所示.
①以点为位似中心,作出
的位似图形△
,使其位似比为
.且△
位于点
的异侧,并表示出
的坐标.
②作出绕点
顺时针旋转
后的图形△
.
③在②的条件下求出点经过的路径长.
阅读理解:
我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.
例如:角的平分线是到角的两边距离相等的点的轨迹.
问题:如图1,已知 为 的中位线, 是边 上一动点,连接 交 于点 ,那么动点 为线段 中点.
理由: 线段 为 的中位线, ,
由平行线分线段成比例得:动点 为线段 中点.
由此你得到动点 的运动轨迹是: .
知识应用:
如图2,已知 为等边 边 、 上的动点,连接 ;若 ,且等边 的边长为8,求线段 中点 的运动轨迹的长.
拓展提高:
如图3, 为线段 上一动点(点 不与点 、 重合),在线段 的同侧分别作等边 和等边 ,连接 、 ,交点为 .
(1)求 的度数;
(2)若 ,求动点 运动轨迹的长.
如图,在 中, ,以 为直径的半圆 交 于点 ,过点 作半圆 的切线,交 于点 .
(1)求证: ;
(2)若 , ,求 的长.
如图,在 中, , ,以点 为圆心, 为半径的圆交 的延长线于点 ,过点 作 的平行线,交 于点 ,连接 .
(1)求证: 为 的切线;
(2)若 ,求弧 的长.
已知 的两边分别与 相切于点 , , 的半径为 .
(1)如图1,点 在点 , 之间的优弧上, ,求 的度数;
(2)如图2,点 在圆上运动,当 最大时,要使四边形 为菱形, 的度数应为多少?请说明理由;
(3)若 交 于点 ,求第(2)问中对应的阴影部分的周长(用含 的式子表示).
如图①,在钝角 中, , ,点 为边 中点,点 为边 中点,将 绕点 逆时针方向旋转 度 .
(1)如图②,当 时,连接 、 .求证: ;
(2)如图③,直线 、 交于点 .在旋转过程中, 的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;
(3)将 从图①位置绕点 逆时针方向旋转 ,求点 的运动路程.