初中数学

如图,CD是⊙O的弦,AB是直径,且 CD AB ,连接ACADOD,其中 AC CD ,过点B的切线交CD的延长线于E

(1)求证:DA平分∠CDO

(2)若AB=12,求图中阴影部分的周长之和(参考数据: π 3 . 1 2 = 1 . 4 , 3 = 1 . 7 ).

来源:2016年湖北省宜昌市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, 直线 CD O 相切于点 C ,且与 AB 的延长线交于点 E ,点 C BF ̂ 的中点 .

(1) 求证: AD CD

(2) 若 CAD = 30 ° O 的半径为 3 ,一只蚂蚁从点 B 出发, 沿着 BE EC CB ̂ 爬回至点 B ,求蚂蚁爬过的路程 ( π 3 . 14 3 1 . 73 , 结果保留一位小数) .

来源:2018年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,四边形ABCD内接于OABO的直径,点PCA的延长线上,CAD=45°

)若AB=4,求 CD ̂ 的长;

)若 BC ̂ = AD ̂ AD=AP,求证:PDO的切线

来源:2017年福建省中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, D = 60 ° ,对角线 AC BC O 经过点 A B ,与 AC 交于点 M ,连接 AO 并延长与 O 交于点 F ,与 CB 的延长线交于点 E AB = EB

(1)求证: EC O 的切线;

(2)若 AD = 2 3 ,求 AM ̂ 的长(结果保留 π )

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,将 ΔABC 绕点 B 顺时针旋转 60 ° 得到 ΔDBE ,点 C 的对应点 E 恰好落在 AB 的延长线上,连接 AD

(1)求证: BC / / AD

(2)若 AB = 4 BC = 1 ,求 A C 两点旋转所经过的路径长之和.

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D BC 边长一点, DE AB ,垂足为点 E ,点 O 在线段 ED 的延长线上,且 O 经过 C D 两点.

(1)判断直线 AC O 的位置关系,并说明理由;

(2)若 O 的半径为2, CD ̂ 的长为 10 9 π ,请求出 A 的度数.

来源:2016年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,已知⊙O是△ABC的外接圆,且BC为⊙O的直径,在劣弧上取一点D,使,将△ADC沿AD对折,得到△ADE,连接CE

(1)求证:CE是⊙O的切线;

(2)若CECD,劣弧的弧长为π,求⊙O的半径.

来源:2019年湖南省永州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, C D O 上的点, OC / / BD ,交 AD 于点 E ,连接 BC

(1)求证: AE = ED

(2)若 AB = 10 CBD = 36 ° ,求 AC ̂ 的长.

来源:2018年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在边长为1的正方形网格中如图所示.

①以点为位似中心,作出的位似图形△,使其位似比为.且△位于点的异侧,并表示出的坐标.

②作出绕点顺时针旋转后的图形△

③在②的条件下求出点经过的路径长.

来源:2019年四川省巴中市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

阅读理解:

我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.

例如:角的平分线是到角的两边距离相等的点的轨迹.

问题:如图1,已知 EF ΔABC 的中位线, M 是边 BC 上一动点,连接 AM EF 于点 P ,那么动点 P 为线段 AM 中点.

理由: 线段 EF ΔABC 的中位线, EF / / BC

由平行线分线段成比例得:动点 P 为线段 AM 中点.

由此你得到动点 P 的运动轨迹是:            

知识应用:

如图2,已知 EF 为等边 ΔABC AB AC 上的动点,连接 EF ;若 AF = BE ,且等边 ΔABC 的边长为8,求线段 EF 中点 Q 的运动轨迹的长.

拓展提高:

如图3, P 为线段 AB 上一动点(点 P 不与点 A B 重合),在线段 AB 的同侧分别作等边 ΔAPC 和等边 ΔPBD ,连接 AD BC ,交点为 Q

(1)求 AQB 的度数;

(2)若 AB = 6 ,求动点 Q 运动轨迹的长.

来源:2016年山东省日照市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,以 BC 为直径的半圆 O AB 于点 D ,过点 D 作半圆 O 的切线,交 AC 于点 E

(1)求证: ACB = 2 ADE

(2)若 DE = 3 AE = 3 ,求 CD ^ 的长.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, ABO = 90 ° OAB = 30 ° ,以点 O 为圆心, OB 为半径的圆交 BO 的延长线于点 C ,过点 C OA 的平行线,交 O 于点 D ,连接 AD

(1)求证: AD O 的切线;

(2)若 OB = 2 ,求弧 CD 的长.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知 MPN 的两边分别与 O 相切于点 A B O 的半径为 r

(1)如图1,点 C 在点 A B 之间的优弧上, MPN = 80 ° ,求 ACB 的度数;

(2)如图2,点 C 在圆上运动,当 PC 最大时,要使四边形 APBC 为菱形, APB 的度数应为多少?请说明理由;

(3)若 PC O 于点 D ,求第(2)问中对应的阴影部分的周长(用含 r 的式子表示).

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图①,在钝角 ΔABC 中, ABC = 30 ° AC = 4 ,点 D 为边 AB 中点,点 E 为边 BC 中点,将 ΔBDE 绕点 B 逆时针方向旋转 α ( 0 α 180 )

(1)如图②,当 0 < α < 180 时,连接 AD CE .求证: ΔBDA ΔBEC

(2)如图③,直线 CE AD 交于点 G .在旋转过程中, AGC 的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;

(3)将 ΔBDE 从图①位置绕点 B 逆时针方向旋转 180 ° ,求点 G 的运动路程.

来源:2019年江苏省宿迁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, AB O 直径, AB = 6 AD 平分 BAC ,交 BC 于点 E ,交 O 于点 D ,连接 BD

(1)求证: BAD = CBD

(2)若 AEB = 125 ° ,求 BD ̂ 的长(结果保留 π )

来源:2019年广西南宁市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

初中数学弧长的计算解答题