ΔABC在边长为1的正方形网格中如图所示.
①以点C为位似中心,作出ΔABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.
②作出ΔABC绕点C顺时针旋转90°后的图形△A2B2C.
③在②的条件下求出点B经过的路径长.
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点. (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由; (3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.
王老师编制了10道选择题,每题3分;对他所教的九年级(1)班和(2)班进行了检测如图(或表格)所示是从两个班分别随机抽取的10名学生的得分情况:
(1)请利用统计图中或统计表中所提供的信息,填充右表: (2)把24分以上(含24分)记为“优秀”,若九(1)班为60名学生,请估算该班有多少名学生成绩优秀; (3)请你先根据《九(2)班成绩统计表》中的数据绘制类似于九(1)班的统计图,再观察比较两个班的统计图中数据分布,你认为哪个班的学生成绩得分比较整齐些,并简述理由.九(2)班成绩统计表:
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E. (1)求证:点D是AB的中点; (2)判断DE与⊙O的位置关系,并证明你的结论; (3)若⊙O的直径为18,cosB=,求DE的长.
某地菜农张三收获了大白菜20吨,辣椒12吨.现计划租用甲、乙两种货车共8辆将这批蔬菜全部运往外地销售;已知一辆甲种货车可装大白菜4吨和辣椒1吨,一辆乙种货车可装大白菜和辣椒各2吨. (1)请问张三有几种方案安排甲、乙两种货车可一次性地将水果运到销售地? (2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则菜农张三应选择哪种方案,使运输费最少?最少运费是多少?
如图,平行于y轴的直尺(一部分)与双曲线(x>0)交于点A、C,与x轴交于点B、D,连结AC.点A、B的刻度分别为5、2(单位:cm),直尺的宽度为2cm,OB=2 cm. (1)求k的值; (2)求经过A、C两点的直线解析式.