(12分)如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1㎝,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长。(2)问t为何值时,△BCP是以BC为腰的等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
如图,三个顶点坐标分别为,,. (1)请画出关于轴对称的; (2)以原点为位似中心,将放大为原来的2倍,得到,请在第三象限内画出,并求出:的值.
解方程:.
先化简,再求值: ,其中.
在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,4),D为OC的中点. (1)求m的值; (2)抛物线的对称轴与 x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与△ADE 相似?若存在,请求出点F的坐标,若不存在,请说明理由; (3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为?若存在,求出点G的坐标;若不存在请说明理由.
已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF. (1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明); (2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断; (3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).