古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段是的直径,延长至点,使,点是线段的中点,交于点,点是上一动点(不与点,重合),连接,,.
(1)求证:是的切线;
(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.
如图,在中,以为直径的交于点,连接,且,连接并延长交的延长线于点,与相切于点.
(1)求证:是的切线;
(2)连接交于点,求证:;
(3)若,求的值.
如图,是的直径,,,,与交于点,点是的中点,,交的延长线于点.
(1)求证:是的切线;
(2),交于点,求的长.
如图1,在四边形 中, , , 是 的直径, 平分 .
(1)求证:直线 与 相切;
(2)如图2,记(1)中的切点为 , 为优弧 上一点, , .求 的值.
如图,在中,,以为直径的分别交,于点,,点在的延长线上,且.
(1)求证:是的切线;
(2)若的直径为3,,求和的长.
如图,在中,,以为直径的交于点,过点作的切线交于点,连接.
(1)求证:是等腰三角形;
(2)求证:.
如图, 是 的切线,切点为 , 是 的直径,连接 交 于 .过 点作 于点 ,交 于 ,连接 , .
(1)求证: 是 的切线;
(2)求证: 为 的内心;
(3)若 , ,求 的长.
如图,为的直径,且,点是上的一动点(不与,重合),过点作的切线交的延长线于点,点是的中点,连接.
(1)求证:是的切线;
(2)当时,求阴影部分面积.
如图,已知是的直径,与相切于点,且.
(1)求证:是的切线;
(2)延长交于点.若,的半径为2,求的长.(结果保留
如图,与的边相切于点,与、边分别交于点、,,是的直径.
(1)求证:是的切线;
(2)若,,求的长.
如图,是的直径,是上一点,是的中点,为延长线上一点,且,与交于点,与交于点.
(1)求证:是的切线;
(2)若,,求直径的长.
如图,线段经过的圆心,交于、两点,,为的弦,连结,,连结并延长交于点,连结交于点.
(1)求证:直线是的切线;
(2)求的半径的长;
(3)求线段的长.
如图,已知是的直径,,是的弦,交于,过点作的切线交的延长线于点,连接并延长交的延长线于点.
(1)求证:是的切线;
(2)若,,求线段的长.
如图,内接于,直径交于点,延长至点,使,连接并延长交过点的切线于点,且满足,连接,若,.
(1)求证:;
(2)求的半径;
(3)求证:是的切线.