初中数学

如图1, PAQ = 90 ° ,分别在 PAQ 的两边 AP AQ 上取点 B E ,使 AB = AE ,点 D PAQ 的平分线 AM 上, DF AB 于点 F ,点 F 在线段 AB 上(不与点 A 重合),以 AB AD 为邻边作 ABCD ,连接 CF EF

(1)猜想 CF EF 之间的关系,并证明你的猜想;

(2)如图2,连接 CE AM 于点 H

①求证: AD + 2 DH = 2 AB

②若 AB = 9 HD AH = 2 7 ,求线段 BC 的长.

来源:2018年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, E AD 的中点,以点 E 为直角顶点的直角三角形 EFG 的两边 EF EG 分别过点 B C F = 30 °

(1)求证: BE = CE

(2)将 ΔEFG 绕点 E 按顺时针方向旋转,当旋转到 EF AD 重合时停止转动,若 EF EG 分别与 AB BC 相交于点 M N (如图 2 )

①求证: ΔBEM ΔCEN

②若 AB = 2 ,求 ΔBMN 面积的最大值;

③当旋转停止时,点 B 恰好在 FG 上(如图 3 ) ,求 sin EBG 的值.

来源:2018年湖南省益阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

边长为 2 2 的正方形 ABCD 中, P 是对角线 AC 上的一个动点(点 P A C 不重合),连接 BP ,将 BP 绕点 B 顺时针旋转 90 ° BQ ,连接 QP QP BC 交于点 E QP 延长线与 AD (或 AD 延长线)交于点 F

(1)连接 CQ ,证明: CQ = AP

(2)设 AP = x CE = y ,试写出 y 关于 x 的函数关系式,并求当 x 为何值时, CE = 3 8 BC

(3)猜想 PF EQ 的数量关系,并证明你的结论.

来源:2017年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, O 是对角线 AC BD 的交点, M BC 边上的动点(点 M 不与 B C 重合), CN DM CN AB 交于点 N ,连接 OM ON MN .下列五个结论:① ΔCNB ΔDMC ;② ΔCON ΔDOM ;③ ΔOMN ΔOAD ;④ A N 2 + C M 2 = M N 2 ;⑤若 AB = 2 ,则 S ΔOMN 的最小值是 1 2 ,其中正确结论的个数是 (    )

A.2B.3C.4D.5

来源:2017年广西贵港市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图1,对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形 ABCD 中, AB = AD CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由;

(2)性质探究:如图1,四边形 ABCD 的对角线 AC BD 交于点 O AC BD .试证明: A B 2 + C D 2 = A D 2 + B C 2

(3)解决问题:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连接 CE BG GE .已知 AC = 4 AB = 5 ,求 GE 的长.

来源:2019年甘肃省天水市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

阅读下面的例题及点拨,并解决问题:

例题:如图①,在等边 ΔABC 中, M BC 边上一点(不含端点 B C ) N ΔABC 的外角 ACH 的平分线上一点,且 AM = MN .求证: AMN = 60 °

点拨:如图②,作 CBE = 60 ° BE NC 的延长线相交于点 E ,得等边 ΔBEC ,连接 EM .易证: ΔABM ΔEBM ( SAS ) ,可得 AM = EM 1 = 2 ;又 AM = MN ,则 EM = MN ,可得 3 = 4 ;由 3 + 1 = 4 + 5 = 60 ° ,进一步可得 1 = 2 = 5 ,又因为 2 + 6 = 120 ° ,所以 5 + 6 = 120 ° ,即: AMN = 60 °

问题:如图③,在正方形 A 1 B 1 C 1 D 1 中, M 1 B 1 C 1 边上一点(不含端点 B 1 C 1 ) N 1 是正方形 A 1 B 1 C 1 D 1 的外角 D 1 C 1 H 1 的平分线上一点,且 A 1 M 1 = M 1 N 1 .求证: A 1 M 1 N 1 = 90 °

来源:2019年甘肃省临夏州中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图所示,在正方形 ABCD ΔEFG 中, AB = EF = EG = 5 cm FG = 8 cm ,点 B C F G 在同一直线 l 上.当点 C F 重合时, ΔEFG 1 cm / s 的速度沿直线 l 向左开始运动, t 秒后正方形 ABCD ΔEFG 重合部分的面积为 Sc m 2 .请解答下列问题:

(1)当 t = 3 秒时,求 S 的值;

(2)当 t = 5 秒时,求 S 的值;

(3)当5秒 < t 8 秒时,求 S t 的函数关系式,并求出 S 的最大值.

来源:2018年甘肃省天水市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,正方形纸片 ABCD 中,对角线 AC BD 交于点 O ,折叠正方形纸片 ABCD ,使 AD 落在 BD 上,点 A 恰好与 BD 上的点 F 重合,展开后折痕 DE 分别交 AB AC 于点 E G ,连接 GF ,给出下列结论:① ADG = 22 . 5 ° ;② tan AED = 2 ;③ S ΔAGD = S ΔOGD ;④四边形 AEFG 是菱形;⑤ BE = 2 OG ;⑥若 S ΔOGF = 1 ,则正方形 ABCD 的面积是 6 + 4 2 ,其中正确的结论个数为 (    )

A.2B.3C.4D.5

来源:2016年四川省攀枝花市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

ΔABC 中, BAC = 90 ° AB = AC ,点 D 为直线 BC 上一动点(点 D 不与 B C 重合),以 AD 为边在 AD 右侧作正方形 ADEF ,连接 CF

(1)观察猜想

如图1,当点 D 在线段 BC 上时,

BC CF 的位置关系为:  

BC CD CF 之间的数量关系为:  ;(将结论直接写在横线上)

(2)数学思考

如图2,当点 D 在线段 CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点 D 在线段 BC 的延长线上时,延长 BA CF 于点 G ,连接 GE .若已知 AB = 2 2 CD = 1 4 BC ,请求出 GE 的长.

来源:2016年四川省达州市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点AC重合),分别过点AC向直线BD作垂线,垂足分别为点EF,点OAC的中点.

(1)当点P与点O重合时如图1,易证 OE OF (不需证明)

(2)直线BP绕点B逆时针方向旋转,当 OFE 30 ° 时,如图2、图3的位置,猜想线段CFAEOE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.

来源:2016年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点AC重合),分别过点AC向直线BD作垂线,垂足分别为点EF,点OAC的中点.

(1)当点P与点O重合时如图1,易证 OE OF (不需证明)

(2)直线BP绕点B逆时针方向旋转,当 OFE 30 ° 时,如图2、图3的位置,猜想线段CFAEOE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.

来源:2016年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

在▱ABCD中,点P和点Q是直线BD上不重合的两个动点, AP CQ ADBD

(1)如图①,求证: BP + BQ BC

(2)请直接写出图②,图③中BPBQBC三者之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下,若 DQ 1 DP 3 ,则BC  

来源:2016年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,边长为2的正方形ABCD中,AE平分∠DACAECD于点F CE AE ,垂足为点E EG CD ,垂足为点G,点H在边BC上, BH DF ,连接AHFHFHAC交于点M,以下结论:

FH 2 BH ;② AC FH ;③ S ACF 1 ;④ CE 1 2 AF ;⑤ E G 2 FG DG

其中正确结论的个数为(  )

A.2B.3C.4D.5

来源:2016年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BEAD于点F

(1)求证:△BDF是等腰三角形;

(2)如图2,过点DDGBE,交BC于点G,连接FGBD于点O

①判断四边形BFDG的形状,并说明理由;

②若AB=6,AD=8,求FG的长.

来源:2017年甘肃省兰州市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD的边长为 a,点 E在边 AB上运动(不与点 AB重合),∠ DAM=45°,点 F在射线 AM上,且 AF 2 BECFAD相交于点 G,连接 ECEFEG,则下列结论:

①∠ ECF=45°;②△ AEG的周长为(1+ 2 2 a;③ BE 2+ DG 2EG 2;④△ EAF的面积的最大值 1 8 a 2

其中正确的结论是  .(填写所有正确结论的序号)

来源:2019年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

初中数学四边形综合题试题