ΔABC 中, ∠ BAC = 90 ° , AB = AC ,点 D 为直线 BC 上一动点(点 D 不与 B , C 重合),以 AD 为边在 AD 右侧作正方形 ADEF ,连接 CF .
(1)观察猜想
如图1,当点 D 在线段 BC 上时,
① BC 与 CF 的位置关系为: .
② BC , CD , CF 之间的数量关系为: ;(将结论直接写在横线上)
(2)数学思考
如图2,当点 D 在线段 CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点 D 在线段 BC 的延长线上时,延长 BA 交 CF 于点 G ,连接 GE .若已知 AB = 2 2 , CD = 1 4 BC ,请求出 GE 的长.
如图,,D、E分别是半径OA和OB的中点,试判断CD与CE的大小关系,并说明理由.
如图,四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足为P. (1)请作出Rt△ABC的外接圆⊙O;(保留作图痕迹,不写作法) (2)点D在⊙O上吗?说明理由; (3)试说明:AC平分∠BAD.
如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点. (1)试判断AB、AC之间的大小关系,并说明理由; (2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点.(直接写出结论)
如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD. (1)求∠D的度数; (2)若CD=2,求BD的长.
张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?