已知二次函数y=ax2+bx+c的图象与反比例函数的图象交于点A (a, -3),与y轴交于点B. (1)试确定反比例函数的解析式; (2)若ÐABO =135°, 试确定二次函数的解析式; (3)在(2)的条件下,将二次函数y=ax2 + bx + c的图象先沿x轴翻折, 再向右平移到与反比例函数的图象交于点P (x0, 6) . 当x0≤x≤3时, 求平移后的二次函数y的取值范围.
解不等式,并求它的非负整数解.
(6分)解方程组
已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点. (1)求一次函数的解析式. (2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值. (3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.
玩具加工厂预计生产甲、乙两种玩具产品共50件。已知生产一件甲种玩具需要A种原料3个,B种原料6个,可获利80元;生产一件乙种玩具需要A种原料5个,B种原料5个,可获利100元.已知玩具加工厂现有A种原料220个,B种原料267个.假设生产甲种玩具个,共获利元, (1)请问有几种方案符合生产玩具的要求; (2)请你写出与之间的函数关系,并用函数的知识来设计一个方案使得获利最大?最大利润是多少元?
今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表. 对雾霾了解程度的统计表:
请结合统计图表,回答下列问题. (1)本次参与调查的学生共有 人,m= ,n= ; (2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 度; (3)请补全图1示数的条形统计图;